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Anomalous two-state model for anomalous diffusion
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An anomalous two-state model~ATSM! with the anomalous long-tailed kinetics of transitions between
states is proposed to describe the specific features of anomalous diffusion~AD! and AD-assisted transitions
~ADAT ! in the double-well potential. In the ATSM the system is assumed to undergo the conventional
diffusion in both states but with different diffusion coefficients. The anomalous features of diffusion result
from the modulation of the diffusion coefficient caused by transitions between ATSM states. The anomalous
space-time evolution predicted by the ATSM is treated within the continuous time random walk theory. With
the use of the proposed ATSM the transient behavior of the AD and the ADAT is analyzed in detail. We found
a large variety of different~and sometimes peculiar! types of the space-time behavior of the free AD and
ADAT. The free AD is found to be of subdiffusion or superdiffusion type for fairly long time depending on the
relation between the parameters of the ATSM. The kinetics of the ADAT can be either conventional~expo-
nential! or anomalous~of inverse power type! for different parameters of the model and time.

DOI: 10.1103/PhysRevE.64.051108 PACS number~s!: 05.40.Fb, 02.50.2r, 82.40.Bj
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I. INTRODUCTION

The anomalous random walks, called hereafter anoma
diffusion ~AD!, manifest themselves in various physical sit
ations. This kind of processes, as applied to some field
physics, biology, and other sciences@1,2#, is a subject of
active studies in recent years. Since the work of Scher
Montroll @3#, which analyzed the specific features of pho
conductivity in disordered and glassy semiconductors, a
of different transport processes and phenomena are co
ered.

Most clearly the peculiarities of the AD show themselv
in the non-Fickean time dependence of the mean squar

displacement@1#: Dx2(t)5x2(t)2 x̄2(t);ta, (aÞ1). The
casea,1, called subdiffusive, is typical for migration o
fractals@1#, motion of a probe particle in a polymer netwo
@4#. The opposite case (a.1) of enhanced diffusion, called
superdiffusion, is observed in migration of tracers in rotat
flows @5# and layered velocity fields@6#, etc.

Recently, the effect of the AD on diffusion-assisted ac
vated rate processes has also been discussed@7#. It is found
that the AD can show itself in the nonexponential kinetics
the AD-assisted escaping from the well.

Usually the AD is described within the generalize
Chapman-Kolmogorov equation@8,9# or the equivalent sto-
chastic equation@10# that under some assumptions can
reduced to the fractional kinetic equations@2#. Very popular
is also the continuous time random walk~CTRW! approach
@11–13# in which the long-tailed waiting time and jum
length probability distribution functions~PDF’s! are as-
sumed@2,9,14#.

In regard to the CTRW approach, only one channel va
ant of this approach has mainly been discussed yet as ap
to the AD @2#, though the multistate extension opens a n
ample scope for the analysis. In principle, the multistate v
ants of the CTRW theory have already been considere
literature@12# and applied to some physical processes. Ho
ever, to the best of our knowledge no applications of t
1063-651X/2001/64~5!/051108~12!/$20.00 64 0511
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variant of the CTRW theory to the analysis of the AD a
other related processes have been made so far.

The well known examples of multistate theories are ba
on the assumption of the Poissonian statistics of transiti
between states@12# in which the evolution equation, calle
the stochastic Liouville equation~SLE!, is Markovian. The
SLE is a particular variant of the general non-Markovi
equations of the non-Poissonian CTRW.

In this work we analyze the AD within the simplest var
ant of the multistate model, the two-state model~TSM!,
which suggests the conventional diffusion of a probe part
in both states but with different diffusion coefficients. Th
transitions between the states assumed in the TSM resu
the time modulation of the diffusion coefficient and thus
the nonconventional random walks of the particle. Our wo
mainly concerns the discussion of the special type of
TSM, the anomalous TSM~ATSM! presuming the non-
Poissonian transition statistics with the long-tailed waiti
time PDF’s. Within the proposed ATSM the space/time ev
lution of the particle is described using the CTRW theory

Some variants of the ATSM for the AD have already be
discussed earlier within the projection operator formali
@2,15#. This approach enables one to reduce the multis
kinetic equations to the single-state one but with a mem
term. After this reduction, however, some interesting info
mation on the inter-relation between the kinetics of TS
transitions and the stochastic motion turns out to be es
tially masked. At the same time, the analysis of this relat
is very instructive and useful for deeper understanding of
specific features of the AD. An important advantage of t
complete consideration within the ATSM, which is the ma
goal of the proposed work, is in the possibility to demo
strate and thoroughly analyze the effect of the TS
transition kinetics on the peculiar properties of the AD.

The analysis within the ATSM shows that the speci
features of the AD strongly depend on the properties of
waiting time PDF’s. First of all these features manifest the
selves in some peculiarities of the kinetics of transitions
tween the two states. The peculiarities significantly affect
©2001 The American Physical Society08-1
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A. I. SHUSHIN PHYSICAL REVIEW E 64 051108
characteristic properties of the AD. To illustrate these effe
we will thoroughly discuss the free AD and AD-assist
transitions in a double-well potential. In both cases
anomalous specific features of the transition kinetics stron
influence the kinetics of the processes giving rise to so
unusual properties of subdiffusive or superdiffusive chara
that shows themselves, in particular, in strongly nonexpon
tial transition kinetics in a double-well potential.

II. TWO-STATE MODEL

We consider the one-dimensional stochastic motion o
probe particle in the external potentialU(x) represented
hereafter in terms of the dimensionless functionu(x)
5U(x)/(kBT), where T is the temperature of the system
The particle is assumed to occupy the two states, 1 or 2
which it undergoes the conventional diffusive motion in t
potentialu(x), however, with different diffusion coefficients
The diffusion is described by the Smoluchowsky equatio
for the coordinate PDF’sr j (x,t)( j 51,2)

ṙ j52L̂ jr j , ~2.1!

where

L̂ j52~wjl j
2!“~“1“u!52D j

0
“~“1“u! ~2.2!

are the Smoluchowsky operators in which“5]/]x, andwj
and l j are the characteristic rates and lengths of diffus
jumps that are combined into the diffusion coefficientsD j

0

5wjl j
2 in the statesj 51,2.

In this TSM, diffusion of the particle is suggested to
modulated by the stochastic (1↔2) transitions between
TSM states. The specific features of the space-time evolu
of the particle predicted by the TSM are essentially de
mined by the statistics of these transitions.

The TSM assuming the Poissonian statistics of (1↔2)
transitions has already been considered in a number of ea
investigations@12#. In this case the space-time evolution
the system is described by the Markovian equation for
vector of PDF’sr(xut)5@r1(xut),r2(xut)#T:

ṙ52L̂r2ŵr, ~2.3!

in which

L̂5F L̂1 0

0 L̂2
G and ŵ5F w1 2w2

2w1 w2
G ~2.4!

with w1,2 being the rates of (1↔2) transitions. Equation
~2.3! is called the SLE.

The main purpose of our study is to analyze ATSM
which (1↔2)-transition statistics is non-Poissonian with t
long-tailed waiting time PDF’sW1(t) and W2(t) of transi-
tions from the states 1 and 2, respectively. In what follo
we will approximateW1,2(t) by
05110
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Wj~ t !5
1

2p i E2 i`

i`

de
eet

11f j~e!
with f j~e!5S e

wj
D n j

.

~2.5!

We will also assume that 0,n j<1.
The stochastic properties of transitions can equivalen

be characterized by the probabilitiesPj (t) not to make any
transitions until timet @naturally,Pj (0)51#:

Pj~ t !5E
t

`

dtWj~t!, i.e.,Wj~ t !52 Ṗj~ t !. ~2.6!

In the approximation~2.5! Pj (t) is written as

Pj~ t !5
1

2p i E2 i`

i`

de
eet

e1ef j
21~e!

5En j
@2~wjt !

n j #,

~2.7!

where

En~2x!5
1

2p i E2 i`

i`

dz
ez

z1xz12n
~2.8!

is the Mittag-Leffler function@16# that for 0,n,1 mono-
tonically decreases with the increase ofx and has the follow-
ing asymptotic properties:En(2x)'12x/G(n11) for uxu
!1 andEn(x→2`)'1/x.

In accordance with Eqs.~2.6!–~2.8!, the PDF’s Wj (t)
monotonically decrease ast is increased with Wj (t)
;1/t11n j at t→`, and is singular att→0:Wj (t);1/t12n j .
Notice that the singularity can be eliminated by taking, f
example,f j (s)5j j s1sn j for which Wj (0)5j j

21 .
The evolution of the system, predicted by the ATSM,

conveniently described within the CTRW approach@11,13#.
In this approach the vector of PDF’sr(xut)
5@r1(xut),r2(xut)#T satisfies the integral equations@11#

h~ t !5Ŵ~ t !Ĝ~ t !r01E
0

t

dt Ŵ~t!Ĝ~t!h~ t2t!, ~2.9!

r~ t !5 P̂~ t !Ĝ~ t !r01E
0

t

dt P̂~t!Ĝ~t!h~ t2t!.

~2.10!

Herer05r(t50) andh5(h1 ,h2)T is the auxiliary vector,
that describes the evolution of the PDFr(x,t) as a result of
only one transition during the timet. In Eqs.~2.9! and~2.10!
we also introduced the operator

Ĝ~ t !5exp~2L̂t ! ~2.11!

of evolution between two consecutive transitions@in which L̂

is given by Eq.~2.4!# and two matricesŴ and P̂ defined as

Ŵ~ t !5F 0 W2~ t !

W1~ t ! 0 G , P̂~ t !5FP1~ t ! 0

0 P2~ t !
G .
~2.12!
8-2
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ANOMALOUS TWO-STATE MODEL FOR ANOMALOUS DIFFUSION PHYSICAL REVIEW E64 051108
Equations ~2.9! and ~2.10! can be considered as a no
Poissonian generalization of the SLE~2.3!. Naturally, in the
Poissonian case,Wj (t)5wjexp(2wjt) they reduce to the
SLE ~2.3!.

Most conveniently Eqs.~2.9! and ~2.10! are represented
with the Laplace transformation in time, that for any functi
of time g(t) is conventionally denoted asg̃(e)
5*0

`dt g(t)exp(2et),

h̃5WG̃r01WG̃h̃ and r̃5PG̃r01PG̃h̃.
~2.13!

The solution of Eqs.~2.13! is given by

r~ t !5T̂~ t !r0 , or r̃~e!5T̃~e!r0 , ~2.14!

where the Laplace transformT̃(e) is the (232) matrix with

T̃i j 5~f̂ i1d i j f̂1f̂2!/~v̂ if̂ !,~ i , j 51,2!, ~2.15!

in which d i j is the Kronecker symbol (d i j 50 for iÞ j and
d j j 51),

v̂ j5e1L̂ j , f̂ j5f j~v̂ j !5~v̂ j /wj !
n j , ~2.16!

and f̂5f̂11f̂21f̂1f̂2. It is easily seen that the evolutio
matrix T̂(t) ensures the conservation of the total populat
of both states.

To clarify the specific features of the ATSM we begin o
discussion with the analysis of the kinetics of (1↔2) tran-
sitions ~in the absence of diffusion!.

III. KINETICS OF TRANSITIONS

The proposed ATSM predicts very important peculiarit
of the kinetics of (1↔2) transitions in the absence of diffu
sion, when L̂15L̂250. In this casev̂15v̂25e, and the
above-mentioned conservation rule for the total populati
of the states is written as

T̃1 j~e!1T̃2 j~e!51/e, i.e., T1 j~ t !1T2 j~ t !51.
~3.1!

A. Asymptotic relations

First, let us consider the asymptotic~at t→`) behavior of
T̂(t). It is determined by the analytic properties ofT̃(e) at
e→0:

T̃i j ~e! →
e→0 ~e/wi !

n i

e@~e/w1!n11~e/w2!n2#
. ~3.2!

For example, the limiting value

T̂l5T̂~ t→`!5 lim
e→0

eT̃i j ~e! ~3.3!

can be represented as
05110
n
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T̂l5
1

N Fw2
n w2

n

w1
n w1

nG , T̂l5F0 0

1 1G and T̂l5F1 1

0 0G
~3.4!

(N5w1
n1w2

n), for n15n25n,n1.n2, and n1,n2, respec-
tively.

These seemingly astonishing results~3.4!, especially for
the casen1Þn2, are, in reality, quite clear. The fact is that
very long times the PDF’sWj (t) ~2.5! describe the transi-
tions with strongly different rates: independently of the re
tion betweenw1 andw2 the effective asymptotic~at t→`)
rate is smaller for transitions from the statej with smallern j .
Moreover, the difference between the effective rates
creases ast→`. Naturally, the population of the state wit
slower transitions approaches 1 and, correspondingly,
population of the second state decreases to zero.

Noteworthy is also the important property of the transiti
kinetics predicted by the ATSM. In the casen15n2 the sys-
tem relaxes to the equilibrium state that is determined byT̂l .
For n1Þn2, however, the limiting matrixT̂l ~3.3! does not
represent the equilibrium state. Furthermore, the equilibri
state does not exist in this case. This fact is very import
for the analysis of anomalous processes. In particular,
means that forn1Þn2 it is impossible to introduce the con
ventional averages over equilibrium state such as correla
functions that imply the existence of the stationary equil
rium state.

In general, at very long timest@w1,2
21 the matrix T̂(t)

monotonically approachesT̂l . However, according to Eq
~3.2!, in some cases the nonmonotonic behavior ofTi j (t) is
also expected at intermediate times. Analysis shows~see be-
low! that this nonmonotony appears when the additional r
parameter

w05w1~w1 /w2!n2 /d5w2~w1 /w2!n1 /d, ~3.5!

in which d5n12n2, is small enough:w0!w1,2. It is easily
seen that this relation is observed only in two casesw1
!w2 ,n1.n2 andw1@w2 ,n1,n2.

B. Transient kinetics

To demonstrate the above-mentioned peculiarities let
consider the (1↔2)-transition kinetics over a wide range o
times. Because of the conservation rule~3.1! and the sym-
metry of the problem in respect to the exchange the s
numbers (1↔2) to understand the behavior of all elemen
Ti j (t) it is sufficient to analyze the only one, for exampl
T22(t) whose Laplace transform

T̃22~e!5F e1
e

~e/w2!n2

~e/w1!n1

11~e/w1!n1
G21

. ~3.6!

1. The limit w1™w2

a. In the cased5n12n2.0

T̃22~e!5@e1e~w2 /e!n2#21at e*w1 , ~3.7!
8-3
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A. I. SHUSHIN PHYSICAL REVIEW E 64 051108
T̃22~e!5@e1e~e/w0!d#21at e,w1 , ~3.8!

wherew0 is defined in Eq.~3.5! (w0!w1,2). Therefore

T22~ t !5P2~ t !5En2
„2~w2t !n2

… at t,1/w1 , ~3.9!

T22~ t !512Ed„2~w0t !d
… at t.1/w1 . ~3.10!

In deriving Eq.~3.10! we applied the relation

En~x!512E2n~x21! ~3.11!

that can easily be obtained using the evident formula

~z1xz12n!215z212~z1x21z11n!21. ~3.12!

b. In the cased5n12n2,0

T̃22~e!5@e1e~w2 /e!n2#21at e*w2 , ~3.13!

T̃22~e!5@e1e~e/w0!d#21at w2*e*w1 . ~3.14!

Thus att,1/w1 we get again

T22~ t !5P2~ t !5En2
„2~w2t !n2

… ~3.15!

@see Eq. ~3.9!#, but at t.1/w1 T22(t);1/t udu instead of
T22(t);1/tn2 predicted by Eq.~3.15!.

2. The limit w1šw2

a. In the cased5n12n2.0

T̃22~e!5e21@11o„~w2 /w1!n2
…# ~3.16!

and therefore

T22~ t !511o„~w2 /w1!n2
…. ~3.17!

b. In the cased5n12n2,0

T̃22~e!'e21 at e*w2 , ~3.18!

T̃22~e!'@e1e~e/w0!d#21 at w2@e, ~3.19!

where w05w2(w2 /w1)n2 /udu!w2. This means that over a
wide range of times with high accuracy

T22~ t !5Eudu„2~w0t ! udu
… ~3.20!

with the asymptotic dependenceT22(t);1/t udu.

3. Qualitative features

The behavior ofT22(t) in all cases considered above a
schematically shown in Fig. 1. It is seen that the nonmo
tonic time dependenceT22(t) is observed both forw1@w2
andw1!w2 ~whend.0). In the first case the amplitude o
the nonmonotonic part ofT22(t) is very small in the whole
region of time. In the second case, however, the nonmo
tonic behavior ofT22(t) is markedly pronounced:T22(t) first
drops almost to 0 and then increases back to 1. This stra
behavior results from the anomalous long-tailed time dep
05110
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dence ofWj (t). Recall that all conventional kinetic model
even non-Poissonian~with n15n2), predict monotonic relax-
ation to the equilibrium.

IV. GENERAL FORMULA FOR THE MEAN SQUARE
DISPLACEMENT

The peculiarities of the (1↔2) transition kinetics quite
pronouncedly manifest themselves in the mobility of t
probe particle whenL̂1,2Þ0. To illustrate these manifesta
tions, for definiteness, in what follows we will consider th
case

L̂1Þ0 and L̂250 ~4.1!

in which the strongest anomalous effects on the mobility
expected. These effects substantially depend on the value
wj andn j , and lead to a large variety of different forms o
Ti j (x,t) behavior. Here, for simplicity, we discuss main
the limiting cases of large difference between the rateswj .

In general, the ATSM predicts the finite value of the me
square of displacement

s~ t ![Dx2~ t !5x2~ t !2 x̄2~ t !5s1~ t !r01
1s2~ t !r02

,
~4.2!

wherer0 j
are the components of the initial PDF vectorr0.

The analysis of the time dependenceDx2(t) gives valuable
information on the specific features of the AD described
the ATSM. For our further analysis it is more convenient
use the first derivativeṡ(t) and its dimensionless compo
nentsD j (t)( j 51,2),

ṡ~ t !5d~Dx2!/dt and D j~ t !5ṡ j~ t !/~2w1l1
2!,

~4.3!

in which w1l1
25D1

0 is the diffusion coefficient in the state 1
@see Eq.~2.2!#.

In the case of free diffusionDx2(t) can be conveniently
represented in terms of the Fourier transform in the coo
natex: Ti j (k,t)5*2`

` dx T̃i j (x,t)eikx,

s j~ t !52]2~T1 j1T2 j !/]k2uk50 . ~4.4!

With the use of Eqs.~2.15! one can derive the following

expressions for the Laplace transformss̃̇ j (e):

FIG. 1. Qualitative behavior ofT22(t) for ~1! w1@w2 , n1.n2;
~2! w1@w2 ,n1,n2; ~3! w1!w2 ,n1,n2, and~4! w1!w2 ,n1.n2.
8-4
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s̃̇1~e!5
11f2~e!

eC~e!
and s̃̇2~e!5

1

eC~e!
, ~4.5!

in which

C~e!5F~e!/f1~e!511f2~e!1f2~e!/f1~e!. ~4.6!

Formula~4.5! is very suitable for the analysis of the chara
teristic properties of the mean square displacement.

V. THE BEHAVIOR OF THE MEAN SQUARE
DISPLACEMENT

The time dependencies of the first derivatives of the
mensionless mean square displacements:D j (t)
5ṡ j (t)/(2w1l1

2), ( j 51,2), are schematically shown i
Figs. 2 and 3 forw1!w2 andw1@w2, respectively.

The strongly nonmonotonic behavior ofD j (t) for w1
!w2 andd.0 ~Fig. 2! clearly results from that of the stat
populations predicted by the ATSM as it is demonstrated
Sec. III. Similar nonmonotonic behavior ofD j (t) is also
found in the casew1@w2 and d,0 ~Fig. 3!. As in the
former case it is caused by the nonmonotonic behavior of
corresponding kinetic curves predicted the ATSM.

Below in this section we will present simple analytic
formulas for the dependencies displayed in Figs. 2 and 3

A. Short times t›†max„w1,w2…‡
À1

a. The limit w1!w2. At t&w2
21 the behavior ofD1(t)

and D2(t) is independent of the sign ofd. The times t

FIG. 2. Qualitative behavior ofD1(t) ~a! andD2(t) ~b! for w1

!w2 as well as:n1.n2; ~1!, andn1,n2; ~2!.

FIG. 3. Qualitative behavior ofD1(t) ~a! andD2(t) ~b! for w1

@w2 as well as:n1.n2; ~1!, andn1,n2; ~2!.
05110
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21 correspond toe*w2 at which C(e)'1/@11f2(e)#

and therefore we obtainD j (t),

D1~ t !'1,D2~ t !'12P2~ t !512En2
„2~w2t !n2

….
~5.1!

b. The limit w1@w2. As in the case ofw1!w2, for w1

@w2 at short timest&w1
21, which correspond toe*w1 and

C(e)'f2(e) with f2(e)@1, the behavior ofD1(t) and
D2(t) does not depend on the sign ofd either,

D1~ t !'P1~ t !5En1
„2~w1t !n1

…,D2~ t !'~w2t !n2. ~5.2!

B. Long times tš†min„w1,w2…‡
À1

1. The limit w1™w2

a. The cased5n12n2.0. In the cased.0 the ratew0,
defined in Eq.~3.5!, satisfies inequalityw0!w1,2 and signifi-
cantly controls the long time (t@w1

21) behavior ofD j (t).
Both D1(t) and D2(t) are monotonically increasing func
tions depending only ond. General formulas yieldC(e)
'11(w0 /e)d and

D1~ t !'D2~ t !'Ed„2~w0t !d
…. ~5.3!

b. The cased,0. The long time (t@w1
21) behavior of

s1(t) ands2(t) for d,0 differs from that ford.0 because
in the cased,0 for smalle!w1 the term (e/w0) udu!1 and
thusC(e)'1. This gives

D1~ t !'D2~ t !'1. ~5.4!

It is important to note that, as in the cased.0, at long times
the behavior ofD1(t) andD2(t) is the same.

2. The limit w1šw2

a. The cased5n12n2.0. At e&w2, which determine
this long time (t.w2

21) behavior, C(e)'f2(e)f1
21(e),

i.e.,

D1~ t !'D2~ t !'sin~pd!G~12d!/~w0t !d. ~5.5!

b. The cased,0. In this case the ratew0 is small: w0
!w1,2, and essentially determines the long time kinetics.
e,w2 corresponding to t@w2

21 we have C(e)'1
1f2(e)/f1(e) and therefore

D1~ t !'D2~ t !'12Eudu„2~w0t ! udu
…. ~5.6!

It is worth noting that in the limitw1@w2 ~similarly to w1
!w2) the functionsD1(t) and D2(t) coincide with each
other at long timest@w2

21 independently of the sign ofd.

VI. QUALITATIVE FEATURES OF THE SPATIAL PDF

The expressions~5.1!–~5.6! help us to understand som
important features of the time evolution of the spatial PD
r(x,t).

The general analysis shows that at short timest
&@max(w1,w2)#

21 the time evolution ofr(x,t) strongly de-
8-5
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pends on the initial stater0. At long timest@w1,2, however,
the spatial PDF is independent ofr0 and is mainly deter-
mined by the relation between the parametersn j , ( j 51,2).
Here we will analyze the behavior ofr(x,t) by expressing it
in terms of the evolution operator exp(2L̂1)t of the conven-
tional diffusion in the state 1 whose properties are quite w
known @17#.

A. Short times t›†max„w1,w2…‡
À1

1. The case w1™w2

a. The initial conditionr05(1,0)T. Forr05(1,0)T spatial
evolution is determined byT̃11 represented asT̃11'1/v̂1

5(e1L̂1)21. This operator describes conventional free d
fusion in the state 1:T̂12(t)'exp(2L̂1t).

b. The initial conditionr05(0,1)T. For r05(0,1)T the
evolution is governed by the elementT̃12'(e1L̂1)21@1
1f2(e)#21. The corresponding time-dependent operato
written as

T̂12~ t !'E
0

t

dt e2L̂1tW2~ t2t!. ~6.1!

2. The case w1šw2

a. The initial conditionr05(1,0)T. Forr05(1,0)T spatial
evolution is described byT̃11'f1(v̂1)v̂1

21@11f1(v̂1)#21

and T̃21'e21@11f1(v̂1)#21. The corresponding time
dependent operators are given by

T̂11~ t !'e2L̂1tP1~ t !5e2L̂1tEn1
„2~w1t !n1

…, ~6.2!

T̂21~ t !'E
0

t

dt W1~t!e2L̂1t ~6.3!

b. The initial conditionr05(0,1)T. For r05(0,1)T the
evolution at t&w1

21 is governed by the elementsT̃12

'f1(v̂1)f2
21(e)@11f1(v̂1)#21v̂1

21 and T̃22'e21(1

2v̂1T̃12), which in the time dependent form are represen
as

T̂12~ t !'E
0

t

dt W2~ t2t!P1~t!e2L̂1t, ~6.4!

T̂22~ t !'P2~ t !1E
0

t

dt@12P2~ t2t!#W1~t!e2L̂1t.

~6.5!

B. Long times tÌtmÄ†min„w0,w1,w2…‡
À1

In general, fort*@min(w1,w2)#
21 the behavior ofTi j (t)

are fairly complicated, however, for t@tm
5@min(w0,w1,w2)#

21 it can be obtained in analytical form
quite easily.
05110
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1. The casedÄn1Àn2Ì0

For d5n12n2.0 in the long-time limit only the state 2
is strongly populated@see Eq.~3.4!#, however, both states
make strong contributions to the spatial evolution att@tm ,
(e!tm

21): T̃1(e)5T̃11(e)'T̃12(e)'f1(v̂1)@v̂1f2(e)#21

and T̃2(e)5T̃21(e)'T̃22(e)'e212f1(v̂1)@ef2(e)#21

with v̂15e1L̂1.
The corresponding time-dependent operatorsT̂1(t) and

dT̂2(t)5T̂2(t)21̂ are written as

T̂1~ t !;E
0

t

dt Û1~t!F1~ t2t!, ~6.6!

dT̂2~ t !;2E
0

t

dt Û2~t!F2~ t2t!, ~6.7!

whereÛ j (t);(w1t)12n12 jexp(2L̂1t) andF j (t);tn11 j 22. It
can be shown that the long-time contributions of bothT̂1(t)
anddT̂2(t) to Dx2(t) depend ont ast12d and must be taken
into account. The prediction of Eqs.~6.6! and ~6.7! for the
long-time asymptotics ofDx2(t) is, evidently, in agreemen
with the general results~5.3!–~5.6!, as expected.

It is important to note that in the long time limitt*w0
21

there appears the intermediate asymptotics that corresp
to the Lévy-type coordinate behavior@2,18# of the spatial
PDF r(x,t) ~see below!.

2. The casedÄn1Àn2Ë0

For d,0 at long timest.tm5@min(w0,w1,w2)#
21 the

system mainly populates the state 1. It is easily seen
with high accuracy;w1 /w2!1 the elementsT̂11(t) and
T̂12(t), which determine the space-time evolution of the s
tem for r05(1,0)T and r05(0,1)T, respectively, are given
by T̂11(t)'T̂12(t)'exp(2L̂1t). In other words, the theory
predicts that in the long-time limitt.tm the system under-
goes the conventional free diffusion in the state 1 with
diffusion coefficientD1

05w1l1
2 ~independently ofr0).

C. The anomalous Lévy-type motion at intermediate times

The detailed analysis of the results presented above sh
that in two regions of parameters of the model the dep
dence ofr(x,t) on x is of the long-range inverse-power typ
typical for Lévy flights @2,18#: ~1! d.0 ~independently of
the relation betweenw1 and w2) at long timest@tm , and
~2! w1@w2 ~independently of the relation betweenn1 and
n2) for w1

21,t&w2
21.

The size of the areas of this behavior~in x coordinate! is
very large, but is different in these two cases:AD1t.x
.AD1 /w0 and AD1 /min(w0,w2)*x.AD1 /w1 in the cases
~1! and ~2!, respectively.

The anomalous Le´vy-type long-rangex dependence of
r(x,t) occurs because in the two mentioned cases fore, that
govern the behavior ofr(x,t), one getse,i L̂1i , f1(e)
,f2(e), but if1(v̂1)i'if1(L̂1)i;f2(e). Taking into ac-
8-6



re
e

-

l i
be

r

ho

-

ri

b

n
e
nce

ly
D-
etics

al

,
e

r

of
-

i-

ANOMALOUS TWO-STATE MODEL FOR ANOMALOUS DIFFUSION PHYSICAL REVIEW E64 051108
count these inequalities we arrive at the approximate exp
sions for T̃22 and T̃21 that determine the evolution of th
system in both cases

T̃225
f2~e!e21

f2~e!1L̂ and T̃215T̃22

1

11f1~ L̂1!
, ~6.8!

where

L̂5
f1~ L̂1!

11f1~ L̂1!
5E

0

`

dt~12e2L̂1t!W1~t!. ~6.9!

It should be noted that in the casew1!w2 ,d.0 the expres-
sions ~6.8! are valid only for i L̂1i /w1!1, i.e., for
if1(L̂1)i!1. Thus in this caseL̂'f1(L̂1) and T̃22'T̃21.

The expression~6.8! is the Green’s function of the non
Markovian equation

Ġ2 j52E
0

t

dt g~ t2t!L̂G2 j ,~ j 51,2! ~6.10!

in which

g~ t !5
1

2p i E2 i`

i`

de
e

f2~e!
eet ~6.11!

is a slowly decreasing memory function:g(t);1/t22n2.
Some caution is required in the treatment of the integra
Eq. ~6.11!. To avoid the analysis of divergences it should
considered as a first derivative ofG(t)52* t

`dt g(t)
;1/t12n2.

The physical meaning of two operatorsL̂ and @1
1f1(L̂1)#21 in Eqs. ~6.8! is simple: L̂ is the operator of
diffusive jumps 12exp(2L̂1t) ~in the state 1) averaged ove
the PDF W1(t) @see Eq. ~6.9!#, while the term @1
1f1(L̂1)#215*0

`dt exp(2L̂1t)W1(t) in the expression for

T̃21 represents the distribution of particles that appeared
the state 2 as a result of transitions from the state 1 at s
times.

The inverse power-type dependence ofG2 j (x,t) on x:
G2 j (x,t);x2(112n1), typical for the Lévy-type processes
@10,18# ~with Dx25`), results from the power-type depen
dencef1(L̂1)5(L̂1 /w1)n1 with n1,1 . This fact can be
clearly demonstrated using the expression for the Fou
transformG̃2 j (k,t) of G2 j (x,t),

G̃2 j~k,t !5$e1@e/f2~e!#L̃~k!%21, ~6.12!

whose behavior at smallk is nonanalytical:G̃2 j (k,t);L̃(k)
;k2n1. The finiteness of the exact valueDx2 found in Sec. V
testifies that in the two considered cases it is determined
large x outside the region of Le´vy-type behavior, where
G2 j (x,t) rapidly decreases with the increase ofx.

Thus, the obtained results show that,~1! the anomalous
coordinate behavior ofr(x,t) is governed by the PDF
W1(t): for n1,1 the motion is of Le´vy type ~with Dx2
05110
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5`), while for n151 it represents the conventional diffusio
with finite Dx2; ~2! the anomalous properties of the tim
evolution, for example, the anomalous time depende
Dx2(t);tn2 ~for n151), are controlled by the PDFW2(t).

VII. TRANSITIONS IN THE DOUBLE-WELL POTENTIAL

The peculiarities predicted by the ATSM significant
manifest themselves not only in the free AD but also in A
assisted activated rate processes, for example, in the kin
of transitions in the double-well potential.

A. General expressions

For simplicity, let us consider the double-well potenti
u(x) is symmetric, and assume that the wells~at x.0 and
x,0), denoted hereafter as (1) and (2), are separated by a
high barrier of the inverse parabola shape, located atx50
with the activation energyEa@kBT. The state 2 is taken to
be immobile in accordance with Eq.~4.1!. We also assume
for definiteness, that initially the particle is located in th
well (1).

In the considered high barrier limit,Ea@kBT, in the spec-
trum of the operatorL̂1 the eigenvalue

e15wt'@~l1
2w1!~vbv6!/~pv2!#e2Ea /kBT, ~7.1!

corresponding to the first ‘‘excited’’ state@17# that is respon-
sible for the kinetics of (1↔2) transitions, is much smalle
than all others, describing equilibration within the wells:e1
!e j ( j >2). In Eq. ~7.1! vb andv6 are frequencies of the
potentialu(x) at a top of the barrier and near the bottom
the wells, respectively, andv252kBT/m is the average ther
mal velocity of the particle.

After the short timet r;1/e j >2 of equilibration in the
well (1) the transition kinetics is described by the two e
genvalues

e0[es50 and ea[e1 , ~7.2!

and the corresponding eigenfunctions@17#

fs~x!5
e2u(x)

2Z
and fa~x!'Aafs~x!E

0

x

dz eu(z),

~7.3!

in which Z5*w6
dx exp@2u(x)# is the partition function of

particles in the wells~whose areas are denoted asw6) and
Aa5A2mvb

2/p is the normalization constant in whichm is
the mass of the particle. The functionsfs(x) andfa(x) can
also be represented in the form

fs5
1

2
~f11f2! and fa'

1

2
~f12f2!, ~7.4!

where

f6~x!'fs~x!u~6x!, ~7.5!
8-7
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with u(x) being the Heaviside step function, are the qua
equilibrium spatial PDF’s in the corresponding wells.

Initial population of the well (1) ~independently of the
TSM statej ) means thatr05f1 .

The kinetics of (1↔2) transitions is determined by th
matrix T̂(t) @see Eqs.~2.15!#. Using the bra-ket notation th
representation ofT̂(t) in the (fs ,fa) basis can be written a

T̂[T̂r5ufs&^fsuT̂s1ufa&^fauT̂a, ~7.6!

where

^fsu51,̂ fau'sgn~x! ~7.7!

~i.e. ^f6u'1), and

T̂s5T̂L̂150 and T̂a5T̂L̂15wt
. ~7.8!

The populations of (6) wells are thus given by

n̂6~ t !5E
w6

dx r~xut ! ~7.9!

5^f6uT̂r~ t !ur0&5
1

2
@ T̂s~ t !6T̂a~ t !#, ~7.10!

where w6 denote the integration regions within the wel
These populations are, actually, (232) matrices in the spac
of ATSM statesj. Therefore the total populations

Nj
6~ t !5n1 j

6 ~ t !1n2 j
6 ~ t !5

1

2
@16Qj~ t !#, ~7.11!

whereQj (t)5T1 j
a (t)1T2 j

a (t). In Eq. ~7.11! we took into ac-
count the conservation ruleT1 j

s 1T2 j
s 51 @see Eq.~3.1!#.

Formula ~7.11! is the main result of this section. It ex
presses the kinetics of (1↔2) transitions, i.e., the time
dependent populationsNj

6(t), in terms of the matrix ele-

ments ofT̂(t) that can be obtained by solving Eqs.~2.9! and
~2.10!. In the ATSM considered these matrix elements
given by Eqs.~2.15!.

It is also worth noting that because of the population c
servation ruleNj

1(t)1Nj
2(t)51 it is sufficient to analyze

only one of functionsN2
6(t), for example, the transition

probability Nj
2(t).

In general, the analysis of the transition kinetics is simi
to that carried out in Sec. VI for the free AD. As in the ca
of the free AD, at short times the kinetics strongly depen
on the initial ATSM state. At the same time the characteris
properties of long-time asymptotics of the transition kinet
is independent of the initial state and mainly determined
the parametersn j .

The kinetics of (1↔2) transitions, evidently, result
from the superposition of strongly nonexponential anom
lous transitions between ATSM states and exponential t
sitions between the wells of the potential. The specific f
tures of this kinetics can straightforwardly be obtained w
the use Eq.~7.11! and formulas derived in Sec. VI. On
05110
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should only take into account that the expressions forTi j
a (t)

are given by the corresponding formulas of Sec. VI w
L̂15wt .

To illustrate the specific features of (1↔2)-transition
kinetics let us consider the particular casew1@w2, as an
example. In this case the largest variety of these spec
features is expected. Similar analysis can easily be don
the opposite limitw1!w2 as well.

B. The transition kinetics for w1šw2

According to the general results of Sec. VI at short tim
the specific features of transition kinetics are expected
substantially depend on the initial statej of the ATSM, while
at long time they are mainly determined by the relation b
tweenn1 and n2. Therefore, similar to the case of the fre
AD we will analyze the short and long-time limits sep
rately. In reality, however, instead of the time limits, we w
consider different values of the ratewt of conventional
diffusion-assisted transitions between wells in the state
@see Eq.~7.2!# because this is just the ratewt that determines
the main time domain (t;wt

21) of the transition kinetic de-
pendenciesN1,2

6 (t).

1. The kinetics for wtœw1 (short times)

For largewt*w1, i.e., for short times, the specific fea
tures of the transition kinetics can easily be understood w
the use of general expression derived in Sec. VI A 2.

a. The initial state1. r05(1,0)T. Forr05(1,0)T one gets
from Eqs.~6.4! and ~6.5! ~with the replacementL̂1 by wt)

N1
2~ t !5 1

2 wtE
0

t

dt P1~t!e2wtt. ~7.12!

b. The initial state2. r05(0,1)T. For r05(0,1)T Eqs.~6.4!
and ~6.5! yield ~with the same replacementL̂1 by wt)

N2
2~ t !5E

0

t

dt W2~ t2t!N1
2~t!. ~7.13!

2. The kinetics for w1Ìwtœw2 (intermediate times)

In the wide region of relatively small values ofwt (w1

.wt*w2) and corresponding timesw2
21*t.w1

21 the tran-
sition kineticsNj

6(t) is obtained in a simple and quite un
versal analytical form, i.e., independent of the initial con
tion r0 and the relative values ofn1 and n2 ~the sign ofd
5n12n2). However, the region ofwt values, in which this
kinetics is valid, depends on the sign ofd. For both signs this
region can roughly be represented asw1.wt*w2, but, as
the detailed analysis shows, the low boundary of the reg
is, actually, lower thanw2 and somewhat different for posi
tive and negatived ~see below!.

The general formulas~2.15! show that at timesw2
21*t

.w1
21 the kinetics is determined by the correspondi

Laplace transform ate&wt . In this region ofe we have the
following relations: T̃21

a (e)@T̃11
a (e) and T̃22

a (e)@T̃12
a (e).

This means that for the initial conditionsr05(1,0)T andr0
8-8
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5(0,1)T the kinetics of (1↔2) transitions is determined b
the elementsT̃21

a (e) andT̃22
a (e), respectively, which are writ-

ten as

T̃12
a ~e!@11f1~wt!#'T̃22

a ~e!'@e1je/f2~e!#21,
~7.14!

where

j5f1~wt!/@11f1~wt!#. ~7.15!

The extra term 1/@11f1(wt)# in the expression forT̃12
a in

Eq. ~7.14! describes the decrease of the amplitude of
kinetic function ~without changing the shape! due to fast
initial transitions during the time periodt&w1

21.
Noteworthy is that in the most interesting high barr

limit the relationwt!w1 is quite realistic and thereforeT̃12
a

'T̃22
a andj'f1(wt)5(wt /w1)n1!1.

The inverse Laplace transformation ofT̃12
a (e) and T̃22

a (e)
gives for the kinetics

N1
2~ t !'N2

2~ t !'
1

2
$12En2

„2j~w2t !n2
…%. ~7.16!

Formula ~7.16! predicts the populationN2
2(t) of the well

(2) monotonically increasing with the increase oft @with
N2

2(0)50# and slowly approaching the valueN2
2(`)5 1

2 :
1
2 2N2

2(t);t2n2.
In the end it is worth adding some comments on the

gion of validity of the expression~7.16!, i.e., actually, of the
relation f1(e1wt)'f1(wt) ~i.e., e,wt) applied to derive
formula ~7.14!. The region of validity of this relation de
pends on the sign ofd.

a. The cased5n12n2.0. For d.0 the time evolution
of the corresponding time-dependent elementsT12

a (t) and
T22

a (t) is mainly determined by e;w2(wt /w1)n1 /n2

5wt(w2 /w1)(wt /w1)n1 /n221!wt and, thus, with high accu
racy we can putf1(e1wt)'f1(wt) for any values ofwt
,w1. This means that ford.0 the simple analytical formula
~7.16! is valid over a very wide range of transition rateswt

!w1 and, correspondingly, for any timest.w1
21.

b. The cased,0. In this casew0!w1,2 and the kinetics
significantly depends on the relation between the transi
ratewt andw0. In particular, there appears the low bounda
of validity region for the anomalous kinetics~7.16! given by
inequality wt*w0 ~but wt,w1). This estimation results
from the above mentioned conditione;w2(wt /w1)n1 /n2

,wt . Thus, ford,0 the region of validity of Eq.~7.16! is
w1@wt.w0.

3. The kinetics fordË0 and wtËw0 (long times)

For d,0 @unlike the cased.0, when Eq.~7.16! is valid
at any smallwt# the specific features of the kinetics strong
change aswt decreases fromwt.w0 to wt,w0 ~recall that
for d,0 one getsw0!w1,2). In the limit wt,w0 the main
time domain of the kinetics ist*w0

21. The kinetics itself is
independent of the initial conditionr0 and significantly dif-
05110
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ferent from that forwt*w0. The fact is that in the region o
e&w0 corresponding to the timest*w0

21

T̃21~e!'T̃22~e!'
f2~e!

ef1~e1wt!
, ~7.17!

T̃11~e!'T̃12~e!'
1

e1wt
F12

f2~e!

f1~e1wt!
G , ~7.18!

and thereforeQj (t)5T1 j
a (t)1T2 j

a (t) is represented as

Qj5exp~2wtt !1qj~ t !, ~7.19!

where qj (t) are the functions of small absolute value (qj
!1), independent ofj and, of inverse power-type form.

The behavior ofqj (t) can be understood by considerin
for example, T2(t)5T21(t)'T22(t). The inverse Laplace
transform of the expression~7.17! yields

T2~ t !;
1

~w0t ! udu E0

1

dx xn121~12x!2n2e2(wtt)x.

~7.20!

For wtt!1 and wtt@1 one getsT2(t);(w0t)2udu and
T2(t);(w0 /w1)n1(w0t)2n2, respectively. Similar evaluation
predicts the same inverse power type behavior of the fu
tion dT1(t)5e2wtt2T11(t)'e2wtt2T12(t). Thus the transi-
tion kinetics is given by

N1
2~ t !'N2

2~ t !' 1
2 @12e2wtt2q~ t !#, ~7.21!

whereq(t)'q1(t)'q2(t) and

q~ t !;~w0t !2udu for w1,2
21!t!wt

21 , ~7.22!

q~ t !;~w0t !2n2 for t@wt
21 . ~7.23!

Formula ~7.21! shows that for smallwt,w0 initially the
transition kinetics is exponential, but at long times wh
e2wtt,q(t) the exponential kinetics is changed by th
anomalous inverse power-type one~7.23!. The intermediate
asymptotics ~7.22! does not seem to be distinguishab
against a background of the main exponential part at
;wt

21 .

VIII. DISCUSSION

In this work we thoroughly analyzed the ATSM for AD
The TSM assumes that the probe particle undergoes con
tional diffusion in two states, denoted as 1 and 2, wh
differ in the value of the diffusion coefficient. The motion
modulated by the stochastic transitions between these
states. The discussed anomalous variant of the TSM imp
the long-tailed statistics of stochastic (1↔2) transitions. The
effect of these transitions on the AD is described within t
CTRW theory.

In our analysis we have used simple approximation~2.6!
and ~2.7! for the PDF’sWj (t), though the most general re
sults obtained are fairly universal and insensitive to the
havior of the PDF’s at small times. We also restricted o
8-9
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selves to the particular case of the model, in which one st
state 2, is immobile~the diffusion coefficientD2

050), and
the strongest anomalous effects are expected. Althoug
should be noted that these effects, evidently, persist for q
long time in the caseD2

0Þ0 as well, ifD2
0!D1

0.
The characteristic properties of the AD has been d

cussed very actively last years. The large number of differ
models of the AD have been proposed in literature@2#
though they usually analyze the asymptotic~at t→`) prop-
erties of diffusion. The proposed ATSM enables one to
scribe selfconsistently the processes over a wide regio
times from t50 to t→`. This means that the model pro
poses the possibility to describe not only asymptotic prop
ties ~at t→`) but the transient processes at finite times
well. The ATSM also allows for the rigorous analysis of th
subtle details of the crossover from different regimes of e
lution. It gives a new insight into the applicability of variou
approximate approaches proposed in literature, for exam
usually applied approaches based on the one-state CT
@2#.

The majority of the above mentioned works discuss o
free diffusion, because of the complexity of the proble
including interaction potential. This has been demonstra
in some recent works studied the AD in the presence
linear potential and parabolic well@2,14,19#. The kinetics of
AD-assisted escaping from the well has also been con
ered, but with the use qualitative scaling arguments in
theory based on fractional diffusion equation@2#. Within the
proposed ATSM we have analyzed not only the free AD c
but also the AD-assisted transitions in the double-well pot
tial, as an example of processes in the presence of intera
potential. It is found that the specific features of the kinet
of anomalous transitions between the states of the AT
strongly manifest themselves in transitions in the doub
well potential. Below some important manifestations a
briefly discussed.

A. Free diffusion

The results of Sec. V and VI show that the ATSM pr
dicts very large variety of types of anomalous diffusion, d
pending on the relation between the ratesw1 andw2, and the
exponentsn1 and n2. The specific features of the AD pre
dicted by the ATSM turn out to be closely related to those
the kinetics of (1↔2) transitions~see Sec. II!. Generally
speaking the free AD, which in our work is characterized
the time-dependent effective diffusion coefficientsD j (t),
( j 51,2) @see Eq.~4.3!#, is determined by the population o
the mobile state 1, i.e.,D j (t) increase as the population o
this state is increased and vice versa.

a. Anomalous diffusion at short times.In the short-time
limit t&@max(w1,w2)#

21 the value of the effective diffusion
coefficientsD j (t) strongly depend on the initial conditio
r0, i.e., on ATSM statej, as it is shown in Sec. V and VI.

~1! For the mobile initial state (1)@r05(1,0)T# the mo-
tion is either the conventional diffusion in the state 1~for
w1!w2) or the subdiffusion with decreasing effective diffu
sion coefficientD1(t), which follows the (1→2)-transitions
kinetics:D1(t);1/(w1t)n1 ~for w1@w2).
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~2! For the immobile initial state (2)@r05(0,1)T# the
diffusion is anomalous both forw1!w2 and forw1@w2 and
can be thought as superdiffusion with the increasing dif
sion coefficientD2(t). The increase is controlled either b
the ratew2, resulting in a relatively fast saturation~for w1

!w2), or by the ratew0!w1,2 that describes slow increas
of D2(t) without saturation.

b. Anomalous diffusion at long times. Most pronouncedly
anomalous properties of the AD manifest themselves in
long time limit t@@min(w1,w2)#

21. Moreover, these proper
ties are independent of the initial conditionr0 and mainly
determined by the sign ofd5n12n2. Some details of the
asymptotic behavior, however, depend on the relation
tweenw1 andw2 as well.

~1! For d.0 the effective diffusion coefficientsD j (t) are
the slowly decreasing functions of time:D1(t)'D2(t)
;(w0t)2d, corresponding to subdiffusion. The dependen
of the exponent of this function ond shows that in this limit
the kinetics results from the interplay of transitions betwe
states 1 and 2.

~2! For d,0 the long time asymptotic behavior of th
system is determined by the conventional diffusion in t
mobile state 1 mainly populated at long times in this ca
Noteworthy is, however, that forw1@w2 this limit is
achieved only at very long timest@w0

21. At shorter times
t&w0

21 the diffusion coefficientsD1(t)'D2(t);(w0t) udu,
representing superdiffusion over a wide range of times.

c. The anomalous Le´vy-type coordinate behavior. In Sec.
VI C we have described the interesting slow inverse-pow
coordinate behavior of the PDFr(x,t) typical for so called
Lévy-type stochastic processes@18#. It is important to em-
phasize that this anomalous behavior is localized in sp
though the corresponding coordinate region can be v
large. Besides, in some cases the region size grows in t
Because of the localization this behavior does not mani
itself in the divergence ofDx2(t), which is always finite~see
Sec. V! and determined in this case by the coordinates o
side the region of anomalous behavior. The results obtai
show that the Le´vy-type behavior ofr(x,t) can be repro-
duced without real flights using the conventional diffusio
like processes whose diffusion coefficient, however,
modulated by the anomalous process with the long-ta
waiting time PDF@for example, the PDF of the form~2.5!#.
Some similar ideas have recently been proposed in R
@20,21# within the one state CTRW approach.

B. The transitions in the double-well potential

In our work, for brevity, we considered only the ca
w1@w2 in which the largest variety of types of kinetics
expected. The opposite casew1!w2 can be treated quite
similarly.

1. The short-time transition kinetics

At short timest&w1
21 the kinetics of (1↔2) transitions

Nj
2(t), predicted by the ATSM, is quite simple and can ea

ily be understood within the conventional terms as in t
case of free diffusion. In accordance with Eq.~7.12!, for the
8-10
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initial stater05(1,0)T the kinetics is determined by the in
terplay of two processes: the diffusion-assisted transi
over a barrier in the state 1 with the ratewt and transitions to
the immobile state 2. Forr05(0,1)T, however, the proces
consists of two stages: the transition from the state 2 to
state 1 represented by the termW2(t2t) and the subsequen
transitions over a barrier described by the functionN1

2(t)
@see Eq. ~7.13!#. The only difference of the short tim
anomalous kinetics from the conventional one is in
nonanalytical dependence on the parameters of the m
and time.

2. The long-time transition kinetics

The anomalous long time transition kinetics, observed
relatively smallwt!w1, is independent of the initial stater0
and substantially differs from the conventional one.

~1! In general, this kinetics is strongly non-exponent
over a wide region of time, as it is demonstrated by E
~7.16! and ~7.19!. Only in the particular case ofd,0 and
very smallwt,w0 the initial part of the kinetics appears t
be exponential.

Similar to the case of the free AD, the most importa
specific features of the kinetics of (1↔2) transitions can
qualitatively be understood by taking into account that th
are closely related to those of the kinetics of (1↔2) transi-
tions in the ATSM. For example, the nonexponential kinet
~7.16! is a clear manifestation of the very similar kinetics
(1↔2) transitions at corresponding times. The exponen
kinetics found ford,0 at not very long times and smallwt
results from the high population of the diffusive state 1
these times, predicted by the ATSM. The universal long ti
asymptotic behaviorNj

2(t)2 1
2 ;t2n2, which follows from

Eqs.~7.16! and~7.19!, can also be considered as the effect
anomalous (1↔2) transitions that control theNj

2(t) at long
times.

~2! According to Eq.~7.16! the anomalous kinetics i
characterized by the transition rate

wc'w2j1/n2;wt
n1 /n2;exp@2Ee /~kBT!#, ~8.1!

whereEe5(n1 /n2)Ea is the effective activation energy. I
principle, the energyEe can significantly differ fromEa if
n1@n2 or n1!n2. This is the important effect of the AD on
the activated rate processes.

~3! Notice that formula~7.16! can also be derived with th
use of the non-Markovan Eq.~6.10!. This gives some addi
tional insight into the physical meaning of both the kinet
~7.16! and Eq.~6.10!. For the particular casen151 ~which
implies d512n2.0) formula similar to Eq.~7.16! has re-
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cently been obtained in Ref.@7#, though at somewhat mor
qualitative level and without the analysis of the applicabil
region.

IX. CONCLUSIONS

This paper concerns detailed analysis of the ATSM
anomalous diffusion and diffusion-assisted transitions in
double well potential. The model assumes that the probe
ticle can be in two states, undergoing conventional diffus
in both states but with different diffusion coefficientsD1

0 and
D2

0. The specific features of anomalous diffusion result fro
transitions between these states described by the long-t
waiting time PDF’sW1,2(t).

The analysis shows that the ATSM provides new insig
into the problem of formation of the AD and AD-assiste
transitions and can be considered as the additional tool
analysis of anomalous transport. It allows one to investig
not only asymptotic~at t→`) properties of the process bu
also the transient phenomena at the short and intermed
time regions that are determined by the characteristic r
w1 andw2 of the change ofW1(t) andW2(t), respectively.
The short time~at t,@max(w1,w2)#

21) properties of the AD
are not universal and strongly depend on the initial state
the ATSM ~given by r0). At intermediate times,
@max(w1,w2)#

21@t*@min(w1,w2)#
21, however, the properties

are independent of the initial ATSM state. It is important
note that for some relation between the parameters of
ATSM at intermediate times the anomalous properties
manifest themselves in the Le´vy-type long-range coordinate
behavior of the distributionr(x,t) in the large region of
coordinates. The long time (t@@min(w0,w1,w2)#

21) specific
features the free AD are mainly determined by the expone
n j in the asymptotic dependenciesWj (t);1/tn j , ( j 51,2). At
these times, depending on the sign ofd5n12n2, the effec-
tive diffusion coefficientsD j (t) are either independent oft,
D j (t)'D1

0 ~for d,0), or slowly decrease with the increas
of time, D j (t);1/td ~for d.0).

The ATSM discussed in this work can, in principle, b
generalized to include larger number of states and used
the analysis fairly complicated processes. The nonmonoto
(1↔2)-transition kinetics predicted by the ATSM leads to
very nontrivial kinetic behavior of multistate systems. T
investigation of this kind of processes is now in progress
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