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Anomalous two-state model for anomalous diffusion
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An anomalous two-state modéATSM) with the anomalous long-tailed kinetics of transitions between
states is proposed to describe the specific features of anomalous diffd&rand AD-assisted transitions
(ADAT) in the double-well potential. In the ATSM the system is assumed to undergo the conventional
diffusion in both states but with different diffusion coefficients. The anomalous features of diffusion result
from the modulation of the diffusion coefficient caused by transitions between ATSM states. The anomalous
space-time evolution predicted by the ATSM is treated within the continuous time random walk theory. With
the use of the proposed ATSM the transient behavior of the AD and the ADAT is analyzed in detail. We found
a large variety of differentand sometimes peculiatypes of the space-time behavior of the free AD and
ADAT. The free AD is found to be of subdiffusion or superdiffusion type for fairly long time depending on the
relation between the parameters of the ATSM. The kinetics of the ADAT can be either conveltigned
nentia) or anomalougof inverse power typefor different parameters of the model and time.
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I. INTRODUCTION variant of the CTRW theory to the analysis of the AD and
other related processes have been made so far.

The anomalous random walks, called hereafter anomalous The well known examples of multistate theories are based
diffusion (AD), manifest themselves in various physical situ- on the assumption of the Poissonian statistics of transitions
ations. This kind of processes, as applied to some fields dfetween stategl2] in which the evolution equation, called
physics, biology, and other sciencgk?2], is a subject of the stochastic Liouville equatio(SLE), is Markovian. The
active studies in recent years. Since the work of Scher an8LE is a particular variant of the general non-Markovian
Montroll [3], which analyzed the specific features of photo-equations of the non-Poissonian CTRW.
conductivity in disordered and glassy semiconductors, a lot In this work we analyze the AD within the simplest vari-
of different transport processes and phenomena are consignt of the multistate model, the two-state mod&sM),
ered. which suggests the conventional diffusion of a probe particle

Most clearly the peculiarities of the AD show themselvesin both states but with different diffusion coefficients. The

in the non-Fickean time dependence of the mean square fransitions between the states assumed in the TSM result in
. ae ae . . - ici hus i
displacemenfd]: Ax%(t) = X2(t) — x2(t)~1%, (a+1). The the time modulation of the diffusion coefficient and thus in

e . . L the nonconventional random walks of the particle. Our work
casea<1, called subdiffusive, is typical for migration on mainly concerns the discussion of the special type of the
fractals[1], motion of a probe particle in a polymer network gy~ the anomalous TSMATSM) presuming the non-

[4]. The opposite casen>1) of enhanced diffusion, called pgjssonian transition statistics with the long-tailed waiting
superdiffusion, is observed in migration of tracers in rotatingtjme PDF’s. Within the proposed ATSM the space/time evo-
flows [5] and layered velocity fieldgs], etc. lution of the particle is described using the CTRW theory.
Recently, the effect of the AD on diffusion-assisted acti-  Some variants of the ATSM for the AD have already been
vated rate processes has also been discy3gett is found  discussed earlier within the projection operator formalism
that the AD can show itself in the nonexponential kinetics of[2,15]. This approach enables one to reduce the multistate
the AD-assisted escaping from the well. kinetic equations to the single-state one but with a memory
Usually the AD is described within the generalized term. After this reduction, however, some interesting infor-
Chapman-Kolmogorov equatidi®,9] or the equivalent sto- mation on the inter-relation between the kinetics of TSM
chastic equatiorf10] that under some assumptions can betransitions and the stochastic motion turns out to be essen-
reduced to the fractional kinetic equatidrid. Very popular tially masked. At the same time, the analysis of this relation
is also the continuous time random waRTRW) approach is very instructive and useful for deeper understanding of the
[11-13 in which the long-tailed waiting time and jump specific features of the AD. An important advantage of the
length probability distribution function§PDF’s) are as- complete consideration within the ATSM, which is the main
sumed[2,9,14. goal of the proposed work, is in the possibility to demon-
In regard to the CTRW approach, only one channel varistrate and thoroughly analyze the effect of the TSM-
ant of this approach has mainly been discussed yet as appli¢cdhnsition kinetics on the peculiar properties of the AD.
to the AD[2], though the multistate extension opens a new The analysis within the ATSM shows that the specific
ample scope for the analysis. In principle, the multistate varifeatures of the AD strongly depend on the properties of the
ants of the CTRW theory have already been considered iwaiting time PDF’s. First of all these features manifest them-
literature[12] and applied to some physical processes. How-selves in some peculiarities of the kinetics of transitions be-
ever, to the best of our knowledge no applications of thisween the two states. The peculiarities significantly affect the
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characteristic properties of the AD. To illustrate these effects 1 (ie ect e\
we will thoroughly discuss the free AD and AD-assisted Wj(t)=2—7_rif , dmeith d’j(e):(W) :
transitions in a double-well potential. In both cases the o ! !
anomalous specific features of the transition kinetics strongly

influence the kinetics of the processes giving rise to SOM&ye will also assume that-0v;<1.

unusual properties of subdiffusive or superdiffusive character The stochastic properties of transitions can equivalently

that shows themselves, in particular, in strongly nonexponerye characterized by the probabiliti®s(t) not to make any
tial transition kinetics in a double-well potential. transitions until timet [naturally, P;(0)=1]

(2.9

Il. TWO-STATE MODEL Pj(t)=J drWi(7), ie W,(h=—P;t). (2.6
We consider the one-dimensional stochastic motion of a ‘

probe particle in the external potentiél(x) represented |, ihe approximation(2.5) P(t) is written as
hereafter in terms of the dimensionless functioifx) :

=U(x)/(kgT), whereT is the temperature of the system. 1 (i= eet
The particle is assumed to occupy the two states, 1 or 2,in  P(t)= 2—] de—————=E,[—(w;1)"],
which it undergoes the conventional diffusive motion in the T -i=  eted; (€) !

potentialu(x), however, with different diffusion coefficients. 2.7
The diffusion is described by the Smoluchowsky equations h
for the coordinate PDF'p;(x,t)(j =1,2) where

) . 1 (i e’

i=—Lip;, 2.1 E, —x=—.f dz——— 2.8

P iPi 2.1 (=) 2mi ) —ie 74 xzt7V 8

where is the Mittag-Leffler function16] that for 0<»<1 mono-
. tonically decreases with the increasexaind has the follow-

Li=—(WA)V(V+Vu)=-D)V(V+Vu) (2.2 ing asymptotic propertiesE,(—x)~1—x/T'(v+1) for |x|

<1 andE (x— — o)~ 1/KX.

are the Smoluchowsky operators in whi€h= 9/ 9x, andw; In accordance with Eqs(2.6—(2.8), the PDF's Wi(t)

and \; are the characteristic rates and lengths of diffusivemon(l)'ior_"Cﬂ”y decrease a$ is increased with V\lll;(t.)
jumps that are combined into the diffusion coefficiepty ~ ~1""" att—ce, and is singular at—0:W;(t)~1/" .

=Wj>\f in the stateg =1,2. Notice that the singularity can be eliminated by taking, for

In this TSM, diffusion of the particle is suggested to be €xa@mple,¢;(s)=¢;s+s"i for which W;(0)=¢; g ,
modulated by the stochastic 412) transitions between  The evolution of the system, predicted by the ATSM, is
TSM states. The specific features of the space-time evolutioponveniently described within the CTRW appro4di, 13.
of the particle predicted by the TSM are essentially deter/n this approach the vector of PDF'sp(x]t)
mined by the statistics of these transitions. =[p1(x[t),p2(X|t)]" satisfies the integral equatiofisl]

The TSM assuming the Poissonian statistics of-+(Q) .
transitions has already peen considered in a number Qf earlier PO =W()B(t) po+ J drW(nG(n) p(t—1), (2.9
investigationg 12]. In this case the space-time evolution of 0
the system is described by the MarkovTian equation for the
vector of PDF'sp(x|t) = X|t),pa2(X|1)]": .4 too .

p(X|t) =[pa(X|t),pa(X[t)] ()= PO pet deTP(T)G(T)n(t_T)_

p=—Lp—wp, 2.3 (2.10

Here po=p(t=0) and7=(7,7,)" is the auxiliary vector,

in which
that describes the evolution of the PIpEx,t) as a result of
- only one transition during the time In Egs.(2.9) and(2.10
.|k O ~ Wy —Wp we also introduced the operator
L= R and w= (2.9
0 L, —W; W3

G(t)=exp(—Lt) (2.1

with w, , being the rates of (&2) transitions. Equation _ : o L
(2.3 is called the SLE. of evolution between two consecutive transitigmswhich L

The main purpose of our study is to analyze ATSM inis given by Eq.(2.4)] and two matrice$V and P defined as
which (1< 2)-transition statistics is non-Poissonian with the
long-tailed waiting time PDF'8V,(t) andW,(t) of transi-
tions from the states 1 and 2, respectively. In what follows
we will approximateW, (t) by

P(1) 0
0 Pyt

0 Wt .
Wity 0 | B

\7V(t)=[
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Equations (2.9 and (2.10 can be considered as a non- AR A 0 0 X 1 1
Poissonian generalization of the SI(E3). Naturally, in the T':N ol T|:[ and T':[O 0}
Poissonian caseW,(t) =w;exp(-w;t) they reduce to the W1 Wy 11

SLE (2.3. (3.9

Most conveniently Eqs(2.9) and (2.10 are represented

with the Laplace transformation in time, that for any function (N = W1t W2), for vy =v,=v,v1>v,, and v;<v,, respec-

. . . ~ tively.
of time g(t) is conventionally denoted asg(e) These seemingly astonishing resul8s4), especially for
=Jodtg(t)exp(-el), the casev; # v, are, in reality, quite clear. The fact is that at
-~ — — - e very long times the PDF'V(t) (2.5 describe the transi-
n=WGpo+WGn and p=PGpo+PGy. tions with strongly different rates: independently of the rela-

(213 tion betweenw, andw, the effective asymptoticat t— )
rate is smaller for transitions from the stateith smallery; .
Moreover, the difference between the effective rates in-
creases as—. Naturally, the population of the state with

The solution of Eqs(2.13 is given by

p()=T(t)po, or p(e)=T(e)po, (2149 slower transitions approaches 1 and, correspondingly, the
_ . o population of the second state decreases to zero.
where the Laplace transforif(e) is the (2<2) matrix with Noteworthy is also the important property of the transition

5 R o kinetics predicted by the ATSM. In the casg= v, the sys-
Tij=(¢i+ jd102)(wi9),(1,j=12), (219  tem relaxes to the equilibrium state that is determined py
For v,# v,, however, the limiting matrixT; (3.3) does not
represent the equilibrium state. Furthermore, the equilibrium
state does not exist in this case. This fact is very important
for the analysis of anomalous processes. In particular, this
means that fow, # v, it is impossible to introduce the con-
" a A aa . ) ~ventional averages over equilibrium state such as correlation
and ¢= 1+ do+ p1¢,. Itis easily seen that the evolution functions that imply the existence of the stationary equilib-
matrix T(t) ensures the conservation of the total populationrium state.
of both states. 3 _ In general, at very long times>w; 3 the matrix T(t)

. To chnfy t_he specific fea_1tures of the A.TSM we begin our monotonically approache$,. However, according to Eq.
discussion with the analysis of the kinetics of¢R) tran- (3.2), in some cases the nonmonotonic behaviol gt) is

sitions (in the absence of diffusion also expected at intermediate times. Analysis sh®&s be-

low) that this nonmonotony appears when the additional rate
lll. KINETICS OF TRANSITIONS parameter

in which §;; is the Kronecker symbol&;=0 for i#j and
5 =1)
ii '

wj=etli,  ¢=¢i(w)=(0j/w)", (216

The proposed ATSM predicts very important peculiarities
of the kinetics of (x-2) transitions in the absence of diffu-

sion, whenL;=1,=0. In this casew;=w,=¢, and the in which 6= v,— v,, is small enoughwy<w; ,. It is easily
above-mentioned conservation rule for the total populationgeen that this relation is observed only in two casgs
of the states is written as <Wy, 11> vy ANAW;SWo, 1< V).

Wo=W1(Wy /Wy) "2/ 0= wy(wWq /W,)"1/?, (3.9

le(6)+T2j(€):1/6, i.e., Tll(t)+T2](t):l(3 1) B. Transient kinetics
To demonstrate the above-mentioned peculiarities let us
consider the (% 2)-transition kinetics over a wide range of
times. Because of the conservation r(#l) and the sym-
First, let us consider the asympto(ett— ) behavior of  metry of the problem in respect to the exchange the state
T(t). It is determined by the analytic properties Dfe) at  numbers (1-2) to understand the behavior of all elements
e—0: T;j(t) it is sufficient to analyze the only one, for example,
T,(t) whose Laplace transform

A. Asymptotic relations

Ty " (3.2
(€) — . . 12 -1
! e[ (elw;) "1+ (elw,)"2] Foe)=| et —= (ehwy)? |- (3.6
- (elwp)"2 1+ (elwy)"™

For example, the limiting value

A - L~ 1. The limit wy<<w,

T|:T(t*>oo): lim 6Tij(6) (33)

€0 a. In the caseS=r,—v,>0

can be represented as Tole)=[e+e(wy/e)"2] tat e=wy, 3.7
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Tol€)=[e+e(elwg)®] tat e<wy, (3.9 L) 4

wherewy is defined in Eq(3.5 (wy<<w, ,). Therefore

T22(t):Pz(t):Eyz(_(Wzt)Vz) at '[<1/W1, (39)

To(t)=1—Es(—(wot)%) at t>1mw;. (3.10 o4 t
In deriving Eq.(3.10 we applied the relation FIG. 1. Qualitative behavior of ,(t) for (1) w;>w,, v;>vy;
E()=1-E_(x} (3.11) (2) wi>W,,v1<w,; (3) WiW,, v1<wp, and(4) Wi<W,,v;>v,.

that can easily be obtained using the evident formula dence ofw;(t). Recall that all conventional kinetic models,
even non-Poissoniamwith v, = v,), predict monotonic relax-

(z+xzZt7Y) " t=z"1—(z+x712A* "1 (3.12  ation to the equilibrium.
b In the cased=w; = »,<0 IV. GENERAL FORMULA FOR THE MEAN SQUARE

Tol€)=[e+e(wy/e)2] tat e=ws,, (3.13 DISPLACEMENT

_ The peculiarities of the (4»2) transition kinetics quite
To€)=[e+e(elwp)?] tat wr=e=w;. (3.19 pronouncedly manifest themselves in the mobility of the

probe particle whenA_l,zth. To illustrate these manifesta-
tions, for definiteness, in what follows we will consider the

Toot)=Pa(t)=E, (— (Wat)"?) 3.1y @€

Thus att<1Av,; we get again

[see EQ.(3.9], but at t>1Mv; To(t)~11t/% instead of L,#0 and L,=0 (4.7)
Too(t)~1/t"2 predicted by Eq(3.15.
in which the strongest anomalous effects on the mobility are
2. The limit w;>w, expected. These effects substantially depend on the values of
w; andv;, and lead to a large variety of different forms of
T;j(x,t) behavior. Here, for simplicity, we discuss mainly
(3.16 the limiting cases of large difference between the ratgs
' In general, the ATSM predicts the finite value of the mean
and therefore square of displacement

a. In the caseS=v;—v,>0

Too€)=€ [1+0((Wy/wq)"2)]

ToAt)=1+0((W/wq)"2). (3.17 a()=Ax3(1) =x2(1) = X2(1) = o (1) po, + 72(1) po,,

b. In the cased=v;— 1,<0 (4.2

Wherepo are the components of the initial PDF vecjgy.
The analy5|s of the time dependem\:gz(t) gives valuable
Tole)~[e+e(elwg)?] ™t at w,>e, (3.19 information on the specific featur_es_o_f the AD descrlk_)ed by
the ATSM. For our further analysis it is more convenient to
where wo=w,(W, /W) ”2’|5|<W2. This means that over a use the first derivativer(t) and its dimensionless compo-
wide range of times with high accuracy nentsD;(t)(j=1,2),

:I‘-zz(E)WE_l at E%WZ, (318)

Too1) =Eja (= (woh)!”) (320 s()=d(Ax?)/dt and D;(t)=c;(t)/(2w\?),

with the asymptotic dependende,(t) ~ 149, (4.3

in whichw;\3=DY is the diffusion coefficient in the state 1
[see Eq(2.2)]. L

In the case of free diffusiodx?(t) can be conveniently
represented in terms of the Fourier transform in the coordi-

natex: 7;; (K,t) = [ 7 .dx T;; (x,t) e™,

3. Qualitative features

The behavior ofT,,(t) in all cases considered above are
schematically shown in Fig. 1. It is seen that the nonmono
tonic time dependence&,,(t) is observed both fow,>w,
andw,<w, (when §>0). In the first case the amplitude of
the nonmonotonic part of ,5(t) is very small in the whole
region of time. In the second case, however, the nonmono-
tonic behavior ofT,,(t) is markedly pronounced:,(t) first

drops almost to 0 and then increases back to 1. This strang¥ith the use of Eqs(2.15 one can derive the following
behavior results from the anomalous long-tailed time depenexpressions for the Laplace transformﬁe)

oj(t) == 0*(Toj+ T)) K%l —o. (4.9
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; D(® =w, ! correspond tae=w, at which W (e)~1[1+ ¢,(€)]
> and therefore we obtaiD(t),
@
Di(t)~1Dy(t)~1-Py(t)=1-E, (= (Wyt)").
0 1 t (5.0
41 B b. The limit w>w,. As in the case ofv;<w,, for w;
2 >Ww, at short timestswl’l, which correspond te=w, and
®) W(e)~¢o(€) with ¢,(€)>1, the behavior ofD(t) and
1 D,(t) does not depend on the sign dfeither,

t

0

Dy(t)=~Py(t)=E, (= (w;t)"1),Da(t)~(w,t)"2. (5.2
FIG. 2. Qualitative behavior dD(t) (a) andD,(t) (b) for w;

<w, as well asv;>vy; (1), andvi<w,; (2). B. Long times t>[min(wy,wy)]*

0'(6):—2 and oy(e)=——— (4.5
' eV (e) 2 eV(e)’ ' a. The caseS=v;— r,>0. In the case’>0 the ratew,,
i which defined in Eq(3.5), satisfies inequalityo<w; , and signifi-
in whic

cantly controls the long timetf>wl’1) behavior of D;(t).
_ _ Both D4(t) and D,(t) are monotonically increasing func-
= =1+ + . (4. 1 2
P(O=0(e)/$r()=1+ $o(e)+ dol )/ fa(e). (4.6 tions depending only ord. General formulas yieldV (e€)
Formula(4.5) is very suitable for the analysis of the charac- ~1+(Wo/€)’ and
teristic properties of the mean square displacement.

D1(t)=D,(t) =Es(— (Wgt)°). (5.3
V. THE BEHAVIOR OF THE MEAN SQUARE b. The cases<0. The long time (>w; ') behavior of
DISPLACEMENT o4(t) ando,(t) for 6<0 differs from that for6>0 because

The time dependencies of the first derivatives of the diJn the cases<0 for smalle<w; the term €/wo)!7<1 and
mensionless mean  square  displacementd;(t) thusW(e)~1. This gives
=oj(t)/(2w)}), (j=1,2), are schematically shown in D, (t)~D(t)~1. (5.4)
Figs. 2 and 3 fow,;<w, andw;>w,, respectively.
The strongly nonmonotonic behavior &j(t) for w; It is important to note that, as in the ca8e 0, at long times
<w, and 6>0 (Fig. 2) clearly results from that of the state the behavior oD, (t) andD,(t) is the same.
populations predicted by the ATSM as it is demonstrated in
Sec. lll. Similar nonmonotonic behavior d@;(t) is also 2. The limit w;>w,
e By & The C3S65= =0 AL e=w, which determine
. is long ti >w, ') behavior, ¥ (e)~ e,
corresponding kinetic curves predicted the ATSM. i els ong time (=w;, ) behavior, ¥(€)= ¢z(€) b1 "(e)
Below in this section we will present simple analytical "’
formulas for the dependencies displayed in Figs. 2 and 3. D,(t)~D,(t)~sin(wd)[(1— 8)/(wyt)°. (5.5

A. Short times tS[max(w; ,w,) ] b. The case’<0. In this case the rate/ is small: w,
<Ww, ,, and essentially determines the long time kinetics. At
e<w, corresponding to t>w2‘l we have V(e)=~1

+ ¢o(€)/ p1(€) and therefore

a. The limit w<w,. At t<w, ! the behavior ofD(t)
and D,(t) is independent of the sign of. The timest

|50 @ Dy(t)=~Dy(t)~1—Ej5(— (wot) ). (5.6

2 It is worth noting that in the limitw,;>w, (similarly to w;
<w,) the functionsD4(t) and D,(t) coincide with each
1 t other at long times>w, ! independently of the sign of.

0
|50
VI. QUALITATIVE FEATURES OF THE SPATIAL PDF

The expressiong5.1)—(5.6) help us to understand some
1 t important features of the time evolution of the spatial PDF
p(x,t). . .
FIG. 3. Qualitative behavior db,(t) (a) andD(t) (b) for wy The general analysis shows that at short times
>w, as well asiv;>v,; (1), andv,<wv,; (2). <[max{v;,w,)]"* the time evolution ofp(x,t) strongly de-

0
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pends on the initial state,. At long timest>w; ,, however,
the spatial PDF is independent pf, and is mainly deter-
mined by the relation between the parametegrs (j =1,2).

Here we will analyze the behavior p{x,t) by expressing it

in terms of the evolution operator exp(,)t of the conven-

tional diffusion in the state 1 whose properties are quite well

known[17].

A. Short times t=<[ max(w; w,)]™*
1. The case w<w,

a. The initial conditiorpy=(1,0)". For po=(1,0)" spatial
evolution is determined by ,; represented ad;;~1/w;

=(e+ I:1)‘1. This operator describes conventional free dif-

fusion in the state 17 ,5(t)~exp(—L,t).
b. The initial conditionpy,=(0,1)". For p,=(0,1)" the
evolution is governed by the elemeft,~(e+L,) 1[1

PHYSICAL REVIEW E 64 051108

1. The cased=v,—r,>0

For 6=v,;—v,>0 in the long-time limit only the state 2
is strongly populatedsee Eq.(3.4)], however, both states
make strong contributions to the spatial evolutiortsatr,,,

(e<7p)): Ti(&)=Ti(e)=Tife)=d(w)[wr1ho(e)]
and Tz(ts)f?m(f)%Tzz(f)~E‘l—<1>1(c51)[6¢>z(6)]‘l
with w;=€+L;.

The corresponding time-dependent operatbyét) and
8TH(t)=T,(t)—1 are written as

A~ t ~
Tl(t)wfodTul(T)Fl(t_T), (66)

A t ~
mz(t)N_JodTUZ(T)Fz(t_T), (67)

+é,(€)]"L. The corresponding time-dependent operator igvhereU;(t)~(wit)* =1 Jexp(-Lt) andFj(t)~t"1*1 2 It

written as

Tt~ f;dre*ﬁlf\/\/z(t—r). (6.1)

2. The case w>w,
a. The initial conditionpg=(1,0)". For po=(1,0)" spatial
evolution is described by 11~ ¢1 (@) w1 [1+ ¢1(wq)] 2

and T,~e 1+ ¢,(w;)]" . The corresponding time-
dependent operators are given by

Tut~e LtPy()=e UE, (~(wit)™), (6.2

. t .

T21(t)~f drW,y(r)e 17 (6.3
0

b. The initial conditionpy=(0,1)". For p,=(0,1)" the

evolution attswl_1 is governed by the element,,

~¢i(w1)d; ([ 1+ di(w)] ot and Trp~e Y1

can be shown that the long-time contributions of b'ij;l(nt)
and 5T ,(t) to Ax?(t) depend ort ast'~? and must be taken
into account. The prediction of Eqé.6) and (6.7) for the
long-time asymptotics oAx?(t) is, evidently, in agreement
with the general resultés.3)—(5.6), as expected.

It is important to note that in the long time Iimjtewg1
there appears the intermediate asymptotics that corresponds
to the Levy-type coordinate behavid2,18] of the spatial
PDF p(x,t) (see below.

2. The cased=v,—r,<0

For <0 at long timest> r,=[min(wy,w;,W,)]"* the
system mainly populates the state 1. It is easily seen that
with high accuracy~w;/w,<1 the elementsT,(t) and
T15(t), which determine the space-time evolution of the sys-
tem for po=(1,0)" and py=(0,1)", respectively, are given
by T14(t)~Ti(t)~exp(Lit). In other words, the theory
predicts that in the long-time limit> 7, the system under-
goes the conventional free diffusion in the state 1 with the
diffusion coefficientD{=w;\? (independently opy).

— @, T1,), which in the time dependent form are represented C. The anomalous Ley-type motion at intermediate times

as

Tt~ J:dTWZ(t— T)Pl(T)e_l:lT, (6.4)

A t i
TaAt)=Pa(t)+ Jodf[l— P,(t—7) W, (r)e b7,
6.5

B. Long times t> 7., =[ min(wgy,w; ,W,)]*

In general, fort=[min(w;,w,)] ! the behavior ofT;; (1)
are fairly = complicated, however, for t>r7,
=[min(wo,w;,W,)] "t it can be obtained in analytical form
quite easily.

The detailed analysis of the results presented above shows
that in two regions of parameters of the model the depen-
dence ofp(x,t) onx s of the long-range inverse-power type,
typical for Levy flights [2,18]: (1) §>0 (independently of
the relation betweemw; andw,) at long timest> r,,, and
(2) wi>w, (independently of the relation between and
vy) for wit<t=w, '

The size of the areas of this behaviar x coordinate is
very large, but is different in these two caseddt>x
>/D,/wy and D, /min(wy,w,)=x>+/D;/w; in the cases
(1) and(2), respectively.

The anomalous hey-type long-rangex dependence of
p(x,t) occurs because in the two mentioned caseg fohnat

govern the behavior op(x,t), one getse<||L,|, #1(€)
<¢s(e), but| ps(w1)||~[ #1(L1)[~ p2(€). Taking into ac-
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count these inequalities we arrive at the approximate expres=«), while for v, =1 it represents the conventional diffusion

sions for T,, and T,; that determine the evolution of the with finite Ax? (2) the anomalous properties of the time
system in both cases evolution, for example, the anomalous time dependence

W(t)%”z (for v1=1), are controlled by the PDW,(t).

~ do(e)e ! ~ o~ 1
T22:—,\ a.nd T21: T22—,\ f (68)
do(e)+L 1+ ¢pq(Ly) VII. TRANSITIONS IN THE DOUBLE-WELL POTENTIAL
where The peculiarities predicted by the ATSM significantly
manifest themselves not only in the free AD but also in AD-
. #1(Ly) o . assisted activated rate processes, for example, in the kinetics
L= —A=f dr(l—e “1Wy(7). (6.9 of transitions in the double-well potential.
1+ ¢a(Ly) Jo
It should be noted that in the casg<w,,5>0 the expres- A. General expressions
sions (6.8 are valid only for ||L,|/w;<1, ie., for For simplicity, let us consider the double-well potential
[ #1(Ly)|<1. Thus in this cas€~ ¢;(L;) andT,~T5;. u(x) is symmetric, and assume that the wehls x>0 and
The expressior6.8) is the Green’s function of the non- X<0), denoted hereafter as-) and (-), are separated by a
Markovian equation high barrier of the inverse parabola shape, locater=ad

with the activation energ¥,>kgT. The state 2 is taken to
) t . ) be immobile in accordance with E.1). We also assume,
Gaj=-— OdTV(t_T)EGZJ (1=12) (6.10  for definiteness, that initially the particle is located in the
well (+).
in which In the considered high barrier limE >kgT, in the spec-

trum of the operatof_1 the eigenvalue
€

1 (i —
y(t):ﬁﬁmoled)z(f)eft (6.1 e1=We~[(Mw) (wpw)/(mv?)]e BalkeT, (7.2

is a slowly decreasing memory function:(t)~1/t2~"2. corresponding to the first “excited” stafd&7] that is respon-
Some caution is required in the treatment of the integral irfible for the kinetics of ¢ — —) transitions, is much smaller
Eq. (6.11). To avoid the analysis of divergences it should bethan all others, describing equilibration within the weks:

considered as a first derivative df(t)=—[7dry(r) <€ (1=2).InEq.(7.) v, andw.. are frequencies of the
~1ft1 e, potentialu(x) at a top of the barrier and near the bottom of

The physical meaning of two operatod and [1  the wells, respectively, ane?=2kgT/m is the average ther-
mal velocity of the particle.

f\1-1; o i S
*¢u(L1)]"" in EQs. (6.8) is simple: L is the operator of After the short timer,~1/e;~, of equilibration in the

diffusive jumps I-exp(-L.t) (in the state 1) averaged over \ye|| (+) the transition kinetics is described by the two ei-
the PDF Wy(t) [see Eq.(6.9], while the term [1  gepvalues

+¢1(Ly)] t=[5drexp(—L7Wy(7) in the expression for

T,, represents the distribution of particles that appeared in €=€6=0 and e;=e, (7.2)
the state 2 as a result of transitions from the state 1 at short
times. and the corresponding eigenfunctidis]

T(he )inver?ﬁzpo)wer—typel ?eperr]]deljce @fj(x,t) on x: e

Gyi(X,t)~x" "V, typical for the Leyy-type processes . _ X R

[16,18| (with Ax?=00), results from the power-type depen- ()= 27 and - ¢a(X)=Aqdbs(X) Jodz e,

dence ¢, (L) =(L,/wy)"t with »;<1 . This fact can be (7.3

clearly demonstrated using the expression for the Fourier _ _ - _

transformézj(k,t) of Gy(x.1), in which Z=fwidxexpi—u(x)] is the partition function of
particles in the wellgwhose areas are denotedwas) and

Gyj(k,t)={e+[ €l po(€)1L(K)} 2, (6.12  As=\2mwi/ = is the normalization constant in which is

the mass of the particle. The functiogig(x) and ¢,(x) can

whose behavior at smalll is nonanalytic_alﬁzj(k,t)~2(k) also be represented in the form

~k?"1, The finiteness of the exact valie® found in Sec. V

testifies that in the two considered cases it is determined by

large x outside the region of hey-type behavior, where

Gyj(x,t) rapidly decreases with the increasexof

Thus, the obtained results show thék) the anomalous where
coordinate behavior ofp(x,t) is governed by the PDF
W, (t): for »;<1 the motion is of Ley type (with Ax? b+ (X)=~ pg(X)O(£X), (7.5

1 1
bs=5(dst¢-) and ¢a~5(di—¢-), (7.4
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with #(x) being the Heaviside step function, are the quasishould only take into account that the expressionsTfp(rt)

equilibrium spatial PDF's in the corresponding wells. are given by the corresponding formulas of Sec. VI with
Initial population of the well () (independently of the Li=w,.
TSM statej) means thapo=d.. . To illustrate the specific features of+-(— —)-transition

matrix T(t) [see Eqs(2.19]. Using the bra-ket notation the example. In this case the largest variety of these specific

representation o'?'(t) in the (¢, ¢,) basis can be written as features is expected. Similar analysis can easily be done in
the opposite limitw;<w, as well.

TETr:|¢s><¢s|TS+|¢a><¢a|Taa (7.6
B. The transition kinetics for w;=>w,
where . .
According to the general results of Sec. VI at short times
(=1 bal~sgr(x) (7.7 the spec_ific features of trans.it.ion kjnetics are expec_ted to
substantially depend on the initial statef the ATSM, while
(i.e.(¢.|~1), and at long time they are mainly determined by the relation be-
tweenv,; and v,. Therefore, similar to the case of the free
T5=T; _o and T2=T{ _,. (7.9 AD we will analyze the short and long-time limits sepa-
! o rately. In reality, however, instead of the time limits, we will
The populations of £) wells are thus given by consider different values of the rate; of conventional
diffusion-assisted transitions between wells in the state 1
. [see Eq(7.2)] because this is just the ratg that determines
n=(t)= N dxp(x|t) (7.9 the main time domaint-w; ) of the transition kinetic de-
- pendenciedNy t).
=(¢+|T,()|po)= %[’rs(t)i?a(t)], (7.10 1. The kinetics for w=w; (short times)

For largew,=w,, i.e., for short times, the specific fea-
wherew.. denote the integration regions within the wells. tures of the transition kinetics can easily be understood with
These populations are, actually,X2) matrices in the space the use of general expression derived in Sec. VIA?2.
of ATSM stateg. Therefore the total populations a. The initial statel. po=(1,0)". For po=(1,0)" one gets

from Egs.(6.4) and(6.5) (with the replacement, by w,)

1
N (D =n5j(D)+ny(D)=5[1=Q;(1], (7.1 ftd 71
N; (1) =3w, TPi(r)e "M, 7.1
0

whereQ;(t) =T3;(t) + T5;(t). In Eq.(7.11) we took into ac-
count the conservation ruflgj; + T5;=1 [see Eq(3.1)]. b. The initial state2. po=(0,1)". For po=(0,1)" Egs.(6.4)
Formula(7.11) is the main result of this section. It ex- and(6.5) yield (with the same replacemeﬁtl by w;)
presses the kinetics of{«+ —) transitions, i.e., the time-
dependent populationslji(t), in terms of the matrix ele-

ments ofT(t) that can be obtained by solving Eq8.9) and
(2.10. In the ATSM considered these matrix elements are
given by Egs(2.15. 2. The kinetics for w>w,=w, (intermediate times)
It is also worth noting that because of the population con-
servation ruIeNJ—*(t)+Nj’(t)=1 it is sufficient to analyze
only one of functionsN, (t), for example, the transition . e s . ) . . .
pro)k/)abilityN’(t) 2 (1) P sition kineticsN; (t) is obtained in a simple and quite uni-
In general, the analysis of the transition kinetics is similarversal analytical form, i.e., independent of the initial cond

to that carried out in Sec. VI for the free AD. As in the casetlOn po and the relative valu_es of; and v, (the sign ofé_
=v,—v,). However, the region olv; values, in which this

of the free AD, at short times the kinetics strongly depends . "*. "< . . : ;
on the initial ATSM state. At the same time the characteristi(j(metICS is valid, depends on the signaiFor both signs this

properties of long-time asymptotics of the transition kinetics €9'0Nn can roughly be represented wg>w,=w,, but, as

is independent of the initial state and mainly determined b)Ihe dftalllledlanalyfrl]s shows(,j the Iowhbciu;?fary ?[ffthe region
the parameters; . Is, actually, lower thanm, and somewhat different for posi-

The kinetics of @+« —) transitions, evidently, results tive and negatived (see below . 1
from the superposition of strongly nonexponential anoma- Tf'f general formulag2.19 show that at timesv, "=t
lous transitions between ATSM states and exponential tran= W1~ the kinetics is determined by the corresponding
sitions between the wells of the potential. The specific feal-aplace transform a¢=w . In this region ofe we have the
tures of this kinetics can straightforwardly be obtained withfollowing relations: T5,(€)>T3,(€) and T5,(€)>T5,(€).
the use Eq(7.11) and formulas derived in Sec. VI. One This means that for the initial conditiong,=(1,0)" and p,

t
Ng(t)szdTWZ(t—T)NI(T). (7.13

In the wide region of relatively small values of;, (w;
>W,;=W,) and corresponding time;s;2’12t>w;l the tran-
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=(0,1)" the kinetics of ¢+ — —) transitions is determined by ferent from that fow,=w,. The fact is that in the region of

the element33,(e) andT3,(¢€), respectively, which are writ-
ten as

TaO[1+ (W) 1=To(€)~[e+ el po(€)] 7Y,
(7.19

where
E=pr(W)/[1+ p1(wyp)]. (7.19

The extra term T4+ ¢41(w,)] in the expression foﬁ"'i‘2 in

Eq. (7.149 describes the decrease of the amplitude of the

kinetic function (without changing the shapealue to fast
initial transitions during the time periodswl_l.

Noteworthy is that in the most interesting high barrier

limit the relationw,<w; is quite realistic and thereforf&3,
~T5 andé~ gy (w) = (we/wy)"1<1. .

The inverse Laplace transformation Bf,(€) and T5,(€)
gives for the kinetics

1
NI (D~Nz ()=~ 3{1-E,,(~€w,0)"2)}.  (7.18

Formula (7.16) predicts the populatiomN, (t) of the well
(=) monotonically increasing with the increase tofwith
N, (0)=0] and slowly approaching the valug, ()= 3:
=N, (t)~t "2

In the end it is worth adding some comments on the re-

gion of validity of the expressiofi7.16), i.e., actually, of the
relation ¢, (e+w;) =~ ¢1(w,) (i.e., e<w;) applied to derive
formula (7.14). The region of validity of this relation de-
pends on the sign of.

a. The cased=v,;—v,>0. For 6>0 the time evolution
of the corresponding time-dependent elemefigt) and
To(t) is mainly determined by e~wy(w,/w,) vy
=w, (W, /W) (w;/w,)"t"2~ 1< w, and, thus, with high accu-
racy we can pulp,(e+w;)=~ ¢4(w,;) for any values ofw,
<wj. This means that fo6>0 the simple analytical formula
(7.16 is valid over a very wide range of transition rates
<w; and, correspondingly, for any tim&e?wl_l.

b. The case’<<0. In this casewy<w; , and the kinetics

e<Ww, corresponding to the timetz;zw(;1

$a(€)

Tr21(f)*rr22(€)%m, (7.17
= = 1 $2(€)
Tll(f)”-rlz(f)“E_HNt 1- Prlerwo | (7.18

and thereforeQ;(t) =T§;(t) + T5;(t) is represented as
Qj=exp(—w;t)+q;(t), (7.19

where g;(t) are the functions of small absolute value; (
<1), independent of and, of inverse power-type form.

The behavior ofg;(t) can be understood by considering,
for example, T,(t) =T,4(t)~T,x(t). The inverse Laplace
transform of the expressiair.17) yields

1 1
Ty(t)~ —WJ’ dx X1 H(1—x) "2e” (WX,
Wot) 0

(
(7.20

For wit<1 and w;t>1 one getsT,(t)~(wot) ™19 and
To(t) ~(Wg/wq) 1 (wgt) ™72, respectively. Similar evaluation
predicts the same inverse power type behavior of the func-
tion ST, (t)=e W= T,y (t)~e Wi'—T,(t). Thus the transi-
tion kinetics is given by

Ny (D=N; ()~3[1-e ™'—q®)], (7.2
whereq(t) ~q4(t)~q,(t) and

) ~(wet) 19 for  wyz<t<w;t,  (7.22

a(t)~(wet) "2 for t>w; t. (7.23

Formula (7.21)) shows that for smallw,<wj initially the
transition kinetics is exponential, but at long times when
e Wit<q(t) the exponential kinetics is changed by the
anomalous inverse power-type ofie23. The intermediate
asymptotics (7.22 does not seem to be distinguishable
againlst a background of the main exponential partt at
~W, .

significantly depends on the relation between the transition

ratew; andw,. In particular, there appears the low boundary

of validity region for the anomalous kineti¢g.16) given by
inequality wy=w, (but w,<w;). This estimation results
from the above mentioned conditioa~w,(w,/w;)"1/"2
<w;. Thus, for5§<0 the region of validity of Eq(7.16) is
WS> W, > W

3. The kinetics for6<0 and w,<wj (long times)
For 5§<0 [unlike the cases>0, when Eq(7.16) is valid

VIIl. DISCUSSION

In this work we thoroughly analyzed the ATSM for AD.
The TSM assumes that the probe particle undergoes conven-
tional diffusion in two states, denoted as 1 and 2, which
differ in the value of the diffusion coefficient. The motion is
modulated by the stochastic transitions between these two
states. The discussed anomalous variant of the TSM implies
the long-tailed statistics of stochastic12) transitions. The
effect of these transitions on the AD is described within the

at any small,] the specific features of the kinetics strongly CTRW theory.

change asv, decreases fromwv,>w, to w,<wj (recall that
for 6<0 one getswy<wj ,). In the limit w,<w, the main
time domain of the kinetics is=w, *. The kinetics itself is
independent of the initial conditiop, and significantly dif-

In our analysis we have used simple approximati®6)
and (2.7) for the PDF’sW;(t), though the most general re-
sults obtained are fairly universal and insensitive to the be-
havior of the PDF's at small times. We also restricted our-
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selves to the particular case of the model, in which one state, (2) For the immobile initial state (2]po=(0,1)"] the
state 2, is immobilgthe diffusion coefficienlD%zO), and diffusion is anomalous both faw;<w, and forw,;>w, and
the strongest anomalous effects are expected. Although, @an be thought as superdiffusion with the increasing diffu-
should be noted that these effects, evidently, persist for quitsion coefficientD,(t). The increase is controlled either by
long time in the cas®3+0 as well, ifD3<DY. the ratew,, resulting in a relatively fast saturatigfor w;
The characteristic properties of the AD has been dis<w,), or by the ratewy<w; , that describes slow increase
cussed very actively last years. The large number of differengf D ,(t) without saturation.
models of the AD have been proposed in literat{igg b. Anomalous diffusion at long timellost pronouncedly
though they usually analyze the asymptd#itt—c) prop-  anomalous properties of the AD manifest themselves in the
erties of diffusion. The proposed ATSM enables one to deigng time limit t>[ min(w; ,w,)]"X. Moreover, these proper-
scribe selfconsistently the processes over a wide region Qfag gre independent of the initial conditipy and mainly

times ftrr?mtzo_éﬁ'ttTooa Thlsbmear:s trat the n:ot(jel Pro- getermined by the sign of=v,—v,. Some details of the
poses the possibility fo describe not only asymplotic prOperélsymptotic behavior, however, depend on the relation be-
ties (at t—o) but the transient processes at finite times a

: , stweenwl andw, as well.
well. The ATSM also allows for the rigorous analysis of the_ (1) For 5>0 the effective diffusion coefficients () are

subtle details of the crossover from different regimes of evo . . )

lution. It gives a new insight into the applicability of various the S'OYV;V decreas'”g funct|ons_ of _t|m®1(t)~D2(t)
approximate approaches proposed in literature, for examplé; (Wot) ~°, corresponding to subdiffusion. The dependence
usually applied approaches based on the one-state CTR®W thg ex_ponent of this functlpn ofi shows that_m this limit
[2]. the kinetics results from the interplay of transitions between

The majority of the above mentioned works discuss onlyStates 1 and 2. . , ,
free diffusion, because of the complexity of the problems (2 For 6<0 the long time asymptotic behavior of the
including interaction potential. This has been demonstratedyStém is determined by the conventional diffusion in the
in some recent works studied the AD in the presence ofobile state 1 mainly populated at long times in this case.
linear potential and parabolic wel2,14,19. The kinetics of Noteworthy is, however, that fow;>w, this limit is
AD-assisted escaping from the well has also been consicachieved only at very long timets>w, . At shorter times
ered, but with the use qualitative scaling arguments in thé=w,* the diffusion coefficientsD;(t)~D(t)~ (wqt)!?,
theory based on fractional diffusion equati@. Within the  representing superdiffusion over a wide range of times.
proposed ATSM we have analyzed not only the free AD case c. The anomalous y-type coordinate behaviom Sec.
but also the AD-assisted transitions in the double-well potenVIC we have described the interesting slow inverse-power
tial, as an example of processes in the presence of interactimoordinate behavior of the PDg{x,t) typical for so called
potential. It is found that the specific features of the kineticsLévy-type stochastic processgs8]. It is important to em-
of anomalous transitions between the states of the ATSMphasize that this anomalous behavior is localized in space
strongly manifest themselves in transitions in the doublethough the corresponding coordinate region can be very
well potential. Below some important manifestations arelarge. Besides, in some cases the region size grows in time.
briefly discussed. Because of the localization this behavior does not manifest
itself in the divergence ahx?(t), which is always finitdsee
Sec. \J and determined in this case by the coordinates out-
side the region of anomalous behavior. The results obtained

The results of Sec. V and VI show that the ATSM pre- show that the Ley-type behavior ofp(x,t) can be repro-
dicts very large variety of types of anomalous diffusion, de-duced without real flights using the conventional diffusion-
pending on the relation between the ratgsandw,, and the  |ike processes whose diffusion coefficient, however, is
exponentsy; and v,. The specific features of the AD pre- modulated by the anomalous process with the long-tailed
dicted by the ATSM turn out to be closely related to those ofwaiting time PDF[for example, the PDF of the fori{2.5)].
the kinetics of (k-2) transitions(see Sec. )l Generally Some similar ideas have recently been proposed in Refs.
speaking the free AD, which in our work is characterized by[20,21] within the one state CTRW approach.
the time-dependent effective diffusion coefficierig(t),

(1=1,2) [see Eq.(4.3)], is determined by the population of B. The transitions in the double-well potential
the mobile state 1, i.eDj(t) increase as the population of
this state is increased and vice versa.

a. Anomalous diffusion at short timels the short-time
limit t=<[max{v,,w,)]* the value of the effective diffusion
coefficientsDj(t) strongly depend on the initial condition
po, 1.€., on ATSM statg, as it is shown in Sec. V and VI.

(1) For the mobile initial state (1)po=(1,0)"] the mo-
tion is either the conventional diffusion in the state(far At short timestswl‘1 the kinetics of (-« —) transitions
w;<<W,) or the subdiffusion with decreasing effective diffu- N; (t), predicted by the ATSM, is quite simple and can eas-
sion coefficientD 1(t), which follows the (1-2)-transitions ily be understood within the conventional terms as in the
kinetics: D4 (t) ~ 1/(wqt) "1 (for wi>ws). case of free diffusion. In accordance with E@.12), for the

A. Free diffusion

In our work, for brevity, we considered only the case
w1>W, in which the largest variety of types of kinetics is
expected. The opposite cagg<w, can be treated quite
similarly.

1. The short-time transition kinetics
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initial state po=(1,0)" the kinetics is determined by the in- cently been obtained in Reff7], though at somewhat more
terplay of two processes: the diffusion-assisted transitiofjualitative level and without the analysis of the applicability
over a barrier in the state 1 with the ratgand transitions to  region.

the immobile state 2. Fas,=(0,1)", however, the process

consists of two stages: the transition from the state 2 to the IX. CONCLUSIONS

state 1 represented by the tevk3(t — 7) and the subsequent

transitions over a barrier described by the functn(7) er e ; L .
[see Eq.(7.13]. The only difference of the short time anomalous diffusion and diffusion-assisted transitions in a
anomalous kinetics from the conventional one is in itsc.iOUbIe well potenhal. The model assumes that_the prpbe par-
nonanalytical dependence on the parameters of the modBFle can be in two states, undergoing conventional diffusion
and time. in both states but with different diffusion coefficier§ and
DY. The specific features of anomalous diffusion result from
2. The long-time transition kinetics trangitior]s between these states described by the long-tailed
The anomalous long time transition kinetics, observed forwa.';wg zgrzgfysigzsmg(:r)ﬁt the ATSM provides new insight
;enlgu;/ue&; rr??g\lll\lti?;vfgrlssflrr(;(ri?E()relg(ieor;:vzfnttri]oengltcﬂeﬁam into t.h.e problem of formatiqn of the AD and AD—assisted
) In enera)I/ this kinetics is stronaly non-ex .onentialtransmons and can be considered as the additional tool for
over a wi%e regibn of time. as it is degnilonstrateg by Eqsanalysis of anomalous transport. It allows one to investigate
(7.16 and (7.19. Only in th’e particular case af<0 and hot only asymptotlciatt%oo) properties of the process but_
ve.r smallw <w the initial part of the kinetics appears to a}lso the.tran3|ent phenomeng at the short and mtgr_medmte
be )éxponen{ial 0 P PP time regions that are determined by the characteristic rates
S : . w; andw, of the change ofV,(t) andW,(t), respectively.
Similar to the case of the free AD, the most |mportant.|.rl]e short2 time(att<[n?ax@v %/\(/))]*1) pronge)rties gf the A)I/D
speqific. features of the kinetics Of.‘L(H._) transitions can are not universal and stronlg’lyzdepend on the initial state of
qualitatively be understood by taking into account that theythe ATSM (given by pg). At intermediate times,

T e el X P> (=Iminioy1) . however, e propertes
' pie, P are independent of the initial ATSM state. It is important to

(1'16)2'5,[? (r:1|ei?ir rr]nan:festr?tlon ?]f dtirrle \':i(?rzy S'T_'kl‘ar k;net;\csn?if Pote that for some relation between the parameters of the
f(in:tic)s fc?u: q ?orsﬁgocgt r?c?tp\c/)ery Igng tien?és aﬁ desrgf;ue aATSM at intermediate times the anomalous properties can

: . e t manifest themselves in the Lgtype long-range coordinate
results from the high population of the diffusive state 1 at e typ grang

these times, predicted by the ATSM. The universal long timebehawor of the distributiorp(x,t) in the large region of

) S 1L, . coordinates. The long timet$[ min(wy,w;,W)] ™) specific
asymptotic behavioN; (t) =z ~t"", Wh'Ch follows from  foo1 res the free AD are mainly determined by the exponents
Egs.(7.16 and(7.19, can also be considered as the effect of

- © v; in the asymptotic dependencigg(t)~ 11", (j=1,2). At
anomalous (%-2) transitions that control thid; (t) atlong  {hese times, depending on the signésf v,— v, the effec-

This paper concerns detailed analysis of the ATSM for

times. , . tive diffusion coefficientsD;(t) are either independent of
h(Z) Acgorglrtl)g tt? Eq.(7.16 the anomalous kinetics is D;(t)~D} (for §<0), or slowly decrease with the increase
characterized by the transition rate of time, D (t)~ 14° (for 6>0).

” vyl The ATSM discussed in this work can, in principle, be
We=woé2~w t e ~exl —Ee/(kgT)], (8.1 generalized to include larger number of states and used for
the analysis fairly complicated processes. The nonmonotonic
whereE.=(v1/v,)E, is the effective activation energy. In (1 2)-transition kinetics predicted by the ATSM leads to a
principle, the energy, can significantly differ fromg, if very nontrivial kinetic behavior of multistate systems. The
v1> v, Or v1<<v,. This is the important effect of the AD on investigation of this kind of processes is now in progress.
the activated rate processes.

(3) Notice that formulg7.16) can also be derived with the
use of the non-Markovan E@6.10. This gives some addi-
tional insight into the physical meaning of both the kinetics This work was partially supported by the Russian Foun-
(7.16 and Eq.(6.10. For the particular case;=1 (which  dation for Basic ReseardiGrant Nos. 00-03-32949 and 99-
implies 6=1—v,>0) formula similar to Eq(7.16 has re- 03-33289.
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